MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   Unicode version

Theorem ipasslem11 27695
Description: Lemma for ipassi 27696. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ipasslem11.a  |-  A  e.  X
ipasslem11.b  |-  B  e.  X
Assertion
Ref Expression
ipasslem11  |-  ( C  e.  CC  ->  (
( C S A ) P B )  =  ( C  x.  ( A P B ) ) )

Proof of Theorem ipasslem11
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10036 . 2  |-  ( C  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  C  =  ( x  +  ( _i  x.  y ) ) )
2 ax-icn 9995 . . . . . . . 8  |-  _i  e.  CC
3 recn 10026 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
4 mulcom 10022 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  =  ( y  x.  _i ) )
52, 3, 4sylancr 695 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  y )  =  ( y  x.  _i ) )
65adantl 482 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  y
)  =  ( y  x.  _i ) )
76oveq2d 6666 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  =  ( x  +  ( y  x.  _i ) ) )
87eqeq2d 2632 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( C  =  ( x  +  ( _i  x.  y ) )  <-> 
C  =  ( x  +  ( y  x.  _i ) ) ) )
9 recn 10026 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
10 ip1i.9 . . . . . . . . . . 11  |-  U  e.  CPreHil
OLD
1110phnvi 27671 . . . . . . . . . 10  |-  U  e.  NrmCVec
12 ipasslem11.a . . . . . . . . . 10  |-  A  e.  X
13 ip1i.1 . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
14 ip1i.4 . . . . . . . . . . 11  |-  S  =  ( .sOLD `  U )
1513, 14nvscl 27481 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  CC  /\  A  e.  X )  ->  (
x S A )  e.  X )
1611, 12, 15mp3an13 1415 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x S A )  e.  X )
179, 16syl 17 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x S A )  e.  X )
18 mulcl 10020 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  _i  e.  CC )  -> 
( y  x.  _i )  e.  CC )
193, 2, 18sylancl 694 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  x.  _i )  e.  CC )
2013, 14nvscl 27481 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
y  x.  _i )  e.  CC  /\  A  e.  X )  ->  (
( y  x.  _i ) S A )  e.  X )
2111, 12, 20mp3an13 1415 . . . . . . . . 9  |-  ( ( y  x.  _i )  e.  CC  ->  (
( y  x.  _i ) S A )  e.  X )
2219, 21syl 17 . . . . . . . 8  |-  ( y  e.  RR  ->  (
( y  x.  _i ) S A )  e.  X )
23 ipasslem11.b . . . . . . . . 9  |-  B  e.  X
24 ip1i.2 . . . . . . . . . 10  |-  G  =  ( +v `  U
)
25 ip1i.7 . . . . . . . . . 10  |-  P  =  ( .iOLD `  U )
2613, 24, 14, 25, 10ipdiri 27685 . . . . . . . . 9  |-  ( ( ( x S A )  e.  X  /\  ( ( y  x.  _i ) S A )  e.  X  /\  B  e.  X )  ->  ( ( ( x S A ) G ( ( y  x.  _i ) S A ) ) P B )  =  ( ( ( x S A ) P B )  +  ( ( ( y  x.  _i ) S A ) P B ) ) )
2723, 26mp3an3 1413 . . . . . . . 8  |-  ( ( ( x S A )  e.  X  /\  ( ( y  x.  _i ) S A )  e.  X )  ->  ( ( ( x S A ) G ( ( y  x.  _i ) S A ) ) P B )  =  ( ( ( x S A ) P B )  +  ( ( ( y  x.  _i ) S A ) P B ) ) )
2817, 22, 27syl2an 494 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x S A ) G ( ( y  x.  _i ) S A ) ) P B )  =  ( ( ( x S A ) P B )  +  ( ( ( y  x.  _i ) S A ) P B ) ) )
2913, 24, 14, 25, 10, 12, 23ipasslem9 27693 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( x S A ) P B )  =  ( x  x.  ( A P B ) ) )
3013, 14nvscl 27481 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  A  e.  X )  ->  (
_i S A )  e.  X )
3111, 2, 12, 30mp3an 1424 . . . . . . . . . 10  |-  ( _i S A )  e.  X
3213, 24, 14, 25, 10, 31, 23ipasslem9 27693 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( y S ( _i S A ) ) P B )  =  ( y  x.  ( ( _i S A ) P B ) ) )
3313, 14nvsass 27483 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
y  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( y  x.  _i ) S A )  =  ( y S ( _i S A ) ) )
3411, 33mpan 706 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  _i  e.  CC  /\  A  e.  X )  ->  (
( y  x.  _i ) S A )  =  ( y S ( _i S A ) ) )
352, 12, 34mp3an23 1416 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
( y  x.  _i ) S A )  =  ( y S ( _i S A ) ) )
363, 35syl 17 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( y  x.  _i ) S A )  =  ( y S ( _i S A ) ) )
3736oveq1d 6665 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( ( y  x.  _i ) S A ) P B )  =  ( ( y S ( _i S A ) ) P B ) )
3813, 25dipcl 27567 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  e.  CC )
3911, 12, 23, 38mp3an 1424 . . . . . . . . . . . 12  |-  ( A P B )  e.  CC
40 mulass 10024 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  _i  e.  CC  /\  ( A P B )  e.  CC )  ->  (
( y  x.  _i )  x.  ( A P B ) )  =  ( y  x.  (
_i  x.  ( A P B ) ) ) )
412, 39, 40mp3an23 1416 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
( y  x.  _i )  x.  ( A P B ) )  =  ( y  x.  (
_i  x.  ( A P B ) ) ) )
423, 41syl 17 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( y  x.  _i )  x.  ( A P B ) )  =  ( y  x.  (
_i  x.  ( A P B ) ) ) )
43 eqid 2622 . . . . . . . . . . . 12  |-  ( normCV `  U )  =  (
normCV
`  U )
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 27694 . . . . . . . . . . 11  |-  ( ( _i S A ) P B )  =  ( _i  x.  ( A P B ) )
4544oveq2i 6661 . . . . . . . . . 10  |-  ( y  x.  ( ( _i S A ) P B ) )  =  ( y  x.  (
_i  x.  ( A P B ) ) )
4642, 45syl6eqr 2674 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( y  x.  _i )  x.  ( A P B ) )  =  ( y  x.  (
( _i S A ) P B ) ) )
4732, 37, 463eqtr4d 2666 . . . . . . . 8  |-  ( y  e.  RR  ->  (
( ( y  x.  _i ) S A ) P B )  =  ( ( y  x.  _i )  x.  ( A P B ) ) )
4829, 47oveqan12d 6669 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x S A ) P B )  +  ( ( ( y  x.  _i ) S A ) P B ) )  =  ( ( x  x.  ( A P B ) )  +  ( ( y  x.  _i )  x.  ( A P B ) ) ) )
4928, 48eqtrd 2656 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x S A ) G ( ( y  x.  _i ) S A ) ) P B )  =  ( ( x  x.  ( A P B ) )  +  ( ( y  x.  _i )  x.  ( A P B ) ) ) )
5013, 24, 14nvdir 27486 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  CC  /\  ( y  x.  _i )  e.  CC  /\  A  e.  X ) )  -> 
( ( x  +  ( y  x.  _i ) ) S A )  =  ( ( x S A ) G ( ( y  x.  _i ) S A ) ) )
5111, 50mpan 706 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( y  x.  _i )  e.  CC  /\  A  e.  X )  ->  (
( x  +  ( y  x.  _i ) ) S A )  =  ( ( x S A ) G ( ( y  x.  _i ) S A ) ) )
5212, 51mp3an3 1413 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( y  x.  _i )  e.  CC )  ->  ( ( x  +  ( y  x.  _i ) ) S A )  =  ( ( x S A ) G ( ( y  x.  _i ) S A ) ) )
539, 19, 52syl2an 494 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( y  x.  _i ) ) S A )  =  ( ( x S A ) G ( ( y  x.  _i ) S A ) ) )
5453oveq1d 6665 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x  +  ( y  x.  _i ) ) S A ) P B )  =  ( ( ( x S A ) G ( ( y  x.  _i ) S A ) ) P B ) )
55 adddir 10031 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( y  x.  _i )  e.  CC  /\  ( A P B )  e.  CC )  ->  (
( x  +  ( y  x.  _i ) )  x.  ( A P B ) )  =  ( ( x  x.  ( A P B ) )  +  ( ( y  x.  _i )  x.  ( A P B ) ) ) )
5639, 55mp3an3 1413 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( y  x.  _i )  e.  CC )  ->  ( ( x  +  ( y  x.  _i ) )  x.  ( A P B ) )  =  ( ( x  x.  ( A P B ) )  +  ( ( y  x.  _i )  x.  ( A P B ) ) ) )
579, 19, 56syl2an 494 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( y  x.  _i ) )  x.  ( A P B ) )  =  ( ( x  x.  ( A P B ) )  +  ( ( y  x.  _i )  x.  ( A P B ) ) ) )
5849, 54, 573eqtr4d 2666 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x  +  ( y  x.  _i ) ) S A ) P B )  =  ( ( x  +  ( y  x.  _i ) )  x.  ( A P B ) ) )
59 oveq1 6657 . . . . . . 7  |-  ( C  =  ( x  +  ( y  x.  _i ) )  ->  ( C S A )  =  ( ( x  +  ( y  x.  _i ) ) S A ) )
6059oveq1d 6665 . . . . . 6  |-  ( C  =  ( x  +  ( y  x.  _i ) )  ->  (
( C S A ) P B )  =  ( ( ( x  +  ( y  x.  _i ) ) S A ) P B ) )
61 oveq1 6657 . . . . . 6  |-  ( C  =  ( x  +  ( y  x.  _i ) )  ->  ( C  x.  ( A P B ) )  =  ( ( x  +  ( y  x.  _i ) )  x.  ( A P B ) ) )
6260, 61eqeq12d 2637 . . . . 5  |-  ( C  =  ( x  +  ( y  x.  _i ) )  ->  (
( ( C S A ) P B )  =  ( C  x.  ( A P B ) )  <->  ( (
( x  +  ( y  x.  _i ) ) S A ) P B )  =  ( ( x  +  ( y  x.  _i ) )  x.  ( A P B ) ) ) )
6358, 62syl5ibrcom 237 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( C  =  ( x  +  ( y  x.  _i ) )  ->  ( ( C S A ) P B )  =  ( C  x.  ( A P B ) ) ) )
648, 63sylbid 230 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( C  =  ( x  +  ( _i  x.  y ) )  ->  ( ( C S A ) P B )  =  ( C  x.  ( A P B ) ) ) )
6564rexlimivv 3036 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  C  =  ( x  +  ( _i  x.  y
) )  ->  (
( C S A ) P B )  =  ( C  x.  ( A P B ) ) )
661, 65syl 17 1  |-  ( C  e.  CC  ->  (
( C S A ) P B )  =  ( C  x.  ( A P B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   .iOLDcdip 27555   CPreHil OLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ph 27668
This theorem is referenced by:  ipassi  27696
  Copyright terms: Public domain W3C validator