MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   Unicode version

Theorem limcun 23659
Description: A point is a limit of  F on  A  u.  B iff it is the limit of the restriction of  F to  A and to  B. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1  |-  ( ph  ->  A  C_  CC )
limcun.2  |-  ( ph  ->  B  C_  CC )
limcun.3  |-  ( ph  ->  F : ( A  u.  B ) --> CC )
Assertion
Ref Expression
limcun  |-  ( ph  ->  ( F lim CC  C
)  =  ( ( ( F  |`  A ) lim
CC  C )  i^i  ( ( F  |`  B ) lim CC  C ) ) )

Proof of Theorem limcun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 23638 . . . . 5  |-  ( x  e.  ( F lim CC  C )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  C  e.  CC ) )
21simp3d 1075 . . . 4  |-  ( x  e.  ( F lim CC  C )  ->  C  e.  CC )
32a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( F lim CC  C )  ->  C  e.  CC ) )
4 inss1 3833 . . . . . 6  |-  ( ( ( F  |`  A ) lim
CC  C )  i^i  ( ( F  |`  B ) lim CC  C ) )  C_  ( ( F  |`  A ) lim CC  C )
54sseli 3599 . . . . 5  |-  ( x  e.  ( ( ( F  |`  A ) lim CC  C )  i^i  (
( F  |`  B ) lim
CC  C ) )  ->  x  e.  ( ( F  |`  A ) lim
CC  C ) )
6 limcrcl 23638 . . . . . 6  |-  ( x  e.  ( ( F  |`  A ) lim CC  C
)  ->  ( ( F  |`  A ) : dom  ( F  |`  A ) --> CC  /\  dom  ( F  |`  A ) 
C_  CC  /\  C  e.  CC ) )
76simp3d 1075 . . . . 5  |-  ( x  e.  ( ( F  |`  A ) lim CC  C
)  ->  C  e.  CC )
85, 7syl 17 . . . 4  |-  ( x  e.  ( ( ( F  |`  A ) lim CC  C )  i^i  (
( F  |`  B ) lim
CC  C ) )  ->  C  e.  CC )
98a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( ( ( F  |`  A ) lim CC  C )  i^i  ( ( F  |`  B ) lim CC  C
) )  ->  C  e.  CC ) )
10 prfi 8235 . . . . . . . 8  |-  { A ,  B }  e.  Fin
1110a1i 11 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  { A ,  B }  e.  Fin )
12 limcun.1 . . . . . . . . 9  |-  ( ph  ->  A  C_  CC )
1312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  A  C_  CC )
14 limcun.2 . . . . . . . . 9  |-  ( ph  ->  B  C_  CC )
1514adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  B  C_  CC )
16 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
1716ssex 4802 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  A  e. 
_V )
1813, 17syl 17 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  A  e. 
_V )
1916ssex 4802 . . . . . . . . . 10  |-  ( B 
C_  CC  ->  B  e. 
_V )
2015, 19syl 17 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  B  e. 
_V )
21 sseq1 3626 . . . . . . . . . 10  |-  ( y  =  A  ->  (
y  C_  CC  <->  A  C_  CC ) )
22 sseq1 3626 . . . . . . . . . 10  |-  ( y  =  B  ->  (
y  C_  CC  <->  B  C_  CC ) )
2321, 22ralprg 4234 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A. y  e. 
{ A ,  B } y  C_  CC  <->  ( A  C_  CC  /\  B  C_  CC ) ) )
2418, 20, 23syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. y  e.  { A ,  B } y  C_  CC 
<->  ( A  C_  CC  /\  B  C_  CC )
) )
2513, 15, 24mpbir2and 957 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  A. y  e.  { A ,  B } y  C_  CC )
26 limcun.3 . . . . . . . . 9  |-  ( ph  ->  F : ( A  u.  B ) --> CC )
2726adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  F :
( A  u.  B
) --> CC )
28 uniiun 4573 . . . . . . . . . 10  |-  U. { A ,  B }  =  U_ y  e.  { A ,  B }
y
29 uniprg 4450 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  U. { A ,  B }  =  ( A  u.  B )
)
3018, 20, 29syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  CC )  ->  U. { A ,  B }  =  ( A  u.  B ) )
3128, 30syl5eqr 2670 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  U_ y  e.  { A ,  B } y  =  ( A  u.  B ) )
3231feq2d 6031 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( F : U_ y  e. 
{ A ,  B } y --> CC  <->  F :
( A  u.  B
) --> CC ) )
3327, 32mpbird 247 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  F : U_ y  e.  { A ,  B } y --> CC )
34 simpr 477 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  C  e.  CC )
3511, 25, 33, 34limciun 23658 . . . . . 6  |-  ( (
ph  /\  C  e.  CC )  ->  ( F lim
CC  C )  =  ( CC  i^i  |^|_ y  e.  { A ,  B }  ( ( F  |`  y ) lim CC  C ) ) )
3635eleq2d 2687 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( x  e.  ( F lim CC  C )  <->  x  e.  ( CC  i^i  |^|_ y  e.  { A ,  B }  ( ( F  |`  y ) lim CC  C
) ) ) )
37 reseq2 5391 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( F  |`  y )  =  ( F  |`  A ) )
3837oveq1d 6665 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( F  |`  y
) lim CC  C )  =  ( ( F  |`  A ) lim CC  C
) )
3938eleq2d 2687 . . . . . . . . . 10  |-  ( y  =  A  ->  (
x  e.  ( ( F  |`  y ) lim CC  C )  <->  x  e.  ( ( F  |`  A ) lim CC  C ) ) )
40 reseq2 5391 . . . . . . . . . . . 12  |-  ( y  =  B  ->  ( F  |`  y )  =  ( F  |`  B ) )
4140oveq1d 6665 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( F  |`  y
) lim CC  C )  =  ( ( F  |`  B ) lim CC  C
) )
4241eleq2d 2687 . . . . . . . . . 10  |-  ( y  =  B  ->  (
x  e.  ( ( F  |`  y ) lim CC  C )  <->  x  e.  ( ( F  |`  B ) lim CC  C ) ) )
4339, 42ralprg 4234 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A. y  e. 
{ A ,  B } x  e.  (
( F  |`  y
) lim CC  C )  <->  ( x  e.  ( ( F  |`  A ) lim CC  C )  /\  x  e.  ( ( F  |`  B ) lim CC  C ) ) ) )
4418, 20, 43syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. y  e.  { A ,  B } x  e.  ( ( F  |`  y ) lim CC  C )  <-> 
( x  e.  ( ( F  |`  A ) lim
CC  C )  /\  x  e.  ( ( F  |`  B ) lim CC  C ) ) ) )
4544anbi2d 740 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( x  e.  CC  /\  A. y  e.  { A ,  B } x  e.  ( ( F  |`  y ) lim CC  C ) )  <->  ( x  e.  CC  /\  ( x  e.  ( ( F  |`  A ) lim CC  C
)  /\  x  e.  ( ( F  |`  B ) lim CC  C ) ) ) ) )
46 limccl 23639 . . . . . . . . . 10  |-  ( ( F  |`  A ) lim CC  C )  C_  CC
4746sseli 3599 . . . . . . . . 9  |-  ( x  e.  ( ( F  |`  A ) lim CC  C
)  ->  x  e.  CC )
4847adantr 481 . . . . . . . 8  |-  ( ( x  e.  ( ( F  |`  A ) lim CC  C )  /\  x  e.  ( ( F  |`  B ) lim CC  C ) )  ->  x  e.  CC )
4948pm4.71ri 665 . . . . . . 7  |-  ( ( x  e.  ( ( F  |`  A ) lim CC  C )  /\  x  e.  ( ( F  |`  B ) lim CC  C ) )  <->  ( x  e.  CC  /\  ( x  e.  ( ( F  |`  A ) lim CC  C
)  /\  x  e.  ( ( F  |`  B ) lim CC  C ) ) ) )
5045, 49syl6bbr 278 . . . . . 6  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( x  e.  CC  /\  A. y  e.  { A ,  B } x  e.  ( ( F  |`  y ) lim CC  C ) )  <->  ( x  e.  ( ( F  |`  A ) lim CC  C )  /\  x  e.  ( ( F  |`  B ) lim
CC  C ) ) ) )
51 elriin 4593 . . . . . 6  |-  ( x  e.  ( CC  i^i  |^|_ y  e.  { A ,  B }  ( ( F  |`  y ) lim CC  C ) )  <->  ( x  e.  CC  /\  A. y  e.  { A ,  B } x  e.  (
( F  |`  y
) lim CC  C )
) )
52 elin 3796 . . . . . 6  |-  ( x  e.  ( ( ( F  |`  A ) lim CC  C )  i^i  (
( F  |`  B ) lim
CC  C ) )  <-> 
( x  e.  ( ( F  |`  A ) lim
CC  C )  /\  x  e.  ( ( F  |`  B ) lim CC  C ) ) )
5350, 51, 523bitr4g 303 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( x  e.  ( CC  i^i  |^|_ y  e.  { A ,  B }  ( ( F  |`  y ) lim CC  C ) )  <->  x  e.  ( ( ( F  |`  A ) lim CC  C
)  i^i  ( ( F  |`  B ) lim CC  C ) ) ) )
5436, 53bitrd 268 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( x  e.  ( F lim CC  C )  <->  x  e.  ( ( ( F  |`  A ) lim CC  C
)  i^i  ( ( F  |`  B ) lim CC  C ) ) ) )
5554ex 450 . . 3  |-  ( ph  ->  ( C  e.  CC  ->  ( x  e.  ( F lim CC  C )  <-> 
x  e.  ( ( ( F  |`  A ) lim
CC  C )  i^i  ( ( F  |`  B ) lim CC  C ) ) ) ) )
563, 9, 55pm5.21ndd 369 . 2  |-  ( ph  ->  ( x  e.  ( F lim CC  C )  <-> 
x  e.  ( ( ( F  |`  A ) lim
CC  C )  i^i  ( ( F  |`  B ) lim CC  C ) ) ) )
5756eqrdv 2620 1  |-  ( ph  ->  ( F lim CC  C
)  =  ( ( ( F  |`  A ) lim
CC  C )  i^i  ( ( F  |`  B ) lim CC  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   {cpr 4179   U.cuni 4436   U_ciun 4520   |^|_ciin 4521   dom cdm 5114    |` cres 5116   -->wf 5884  (class class class)co 6650   Fincfn 7955   CCcc 9934   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  lhop  23779
  Copyright terms: Public domain W3C validator