Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   Unicode version

Theorem supcnvlimsup 39972
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m  |-  ( ph  ->  M  e.  ZZ )
supcnvlimsup.z  |-  Z  =  ( ZZ>= `  M )
supcnvlimsup.f  |-  ( ph  ->  F : Z --> RR )
supcnvlimsup.r  |-  ( ph  ->  ( limsup `  F )  e.  RR )
Assertion
Ref Expression
supcnvlimsup  |-  ( ph  ->  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k
) ) ,  RR* ,  <  ) )  ~~>  ( limsup `  F ) )
Distinct variable groups:    k, F    k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem supcnvlimsup
Dummy variables  i 
j  x  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 supcnvlimsup.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 supcnvlimsup.f . . . . . . . . 9  |-  ( ph  ->  F : Z --> RR )
43adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  F : Z --> RR )
5 id 22 . . . . . . . . . 10  |-  ( n  e.  Z  ->  n  e.  Z )
61, 5uzssd2 39644 . . . . . . . . 9  |-  ( n  e.  Z  ->  ( ZZ>=
`  n )  C_  Z )
76adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( ZZ>=
`  n )  C_  Z )
84, 7feqresmpt 6250 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( m  e.  ( ZZ>= `  n )  |->  ( F `
 m ) ) )
98rneqd 5353 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( m  e.  ( ZZ>= `  n )  |->  ( F `  m
) ) )
109supeq1d 8352 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( m  e.  (
ZZ>= `  n )  |->  ( F `  m ) ) ,  RR* ,  <  ) )
11 nfcv 2764 . . . . . . . . 9  |-  F/_ m F
12 supcnvlimsup.r . . . . . . . . . 10  |-  ( ph  ->  ( limsup `  F )  e.  RR )
1312renepnfd 10090 . . . . . . . . 9  |-  ( ph  ->  ( limsup `  F )  =/= +oo )
1411, 1, 3, 13limsupubuz 39945 . . . . . . . 8  |-  ( ph  ->  E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x )
1514adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x
)
16 ssralv 3666 . . . . . . . . . 10  |-  ( (
ZZ>= `  n )  C_  Z  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  (
ZZ>= `  n ) ( F `  m )  <_  x ) )
176, 16syl 17 . . . . . . . . 9  |-  ( n  e.  Z  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
1817adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( A. m  e.  Z  ( F `  m )  <_  x  ->  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
1918reximdv 3016 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. x  e.  RR  A. m  e.  Z  ( F `  m )  <_  x  ->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
)
2015, 19mpd 15 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n )
( F `  m
)  <_  x )
21 nfv 1843 . . . . . . 7  |-  F/ m
( ph  /\  n  e.  Z )
221eluzelz2 39627 . . . . . . . . 9  |-  ( n  e.  Z  ->  n  e.  ZZ )
23 uzid 11702 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
24 ne0i 3921 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( ZZ>= `  n )  =/=  (/) )
2522, 23, 243syl 18 . . . . . . . 8  |-  ( n  e.  Z  ->  ( ZZ>=
`  n )  =/=  (/) )
2625adantl 482 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( ZZ>=
`  n )  =/=  (/) )
274adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  F : Z
--> RR )
287sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  m  e.  Z )
2927, 28ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( F `  m )  e.  RR )
3021, 26, 29supxrre3rnmpt 39656 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( sup ( ran  ( m  e.  ( ZZ>= `  n
)  |->  ( F `  m ) ) , 
RR* ,  <  )  e.  RR  <->  E. x  e.  RR  A. m  e.  ( ZZ>= `  n ) ( F `
 m )  <_  x ) )
3120, 30mpbird 247 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( m  e.  ( ZZ>= `  n )  |->  ( F `  m
) ) ,  RR* ,  <  )  e.  RR )
3210, 31eqeltrd 2701 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  e.  RR )
33 eqid 2622 . . . 4  |-  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)
3432, 33fmptd 6385 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) : Z --> RR )
35 eqid 2622 . . . . . . . . . 10  |-  ( ZZ>= `  i )  =  (
ZZ>= `  i )
361eluzelz2 39627 . . . . . . . . . 10  |-  ( i  e.  Z  ->  i  e.  ZZ )
3736peano2zd 11485 . . . . . . . . . 10  |-  ( i  e.  Z  ->  (
i  +  1 )  e.  ZZ )
3836zred 11482 . . . . . . . . . . 11  |-  ( i  e.  Z  ->  i  e.  RR )
39 lep1 10862 . . . . . . . . . . 11  |-  ( i  e.  RR  ->  i  <_  ( i  +  1 ) )
4038, 39syl 17 . . . . . . . . . 10  |-  ( i  e.  Z  ->  i  <_  ( i  +  1 ) )
4135, 36, 37, 40eluzd 39635 . . . . . . . . 9  |-  ( i  e.  Z  ->  (
i  +  1 )  e.  ( ZZ>= `  i
) )
42 uzss 11708 . . . . . . . . 9  |-  ( ( i  +  1 )  e.  ( ZZ>= `  i
)  ->  ( ZZ>= `  ( i  +  1 ) )  C_  ( ZZ>=
`  i ) )
4341, 42syl 17 . . . . . . . 8  |-  ( i  e.  Z  ->  ( ZZ>=
`  ( i  +  1 ) )  C_  ( ZZ>= `  i )
)
44 ssres2 5425 . . . . . . . 8  |-  ( (
ZZ>= `  ( i  +  1 ) )  C_  ( ZZ>= `  i )  ->  ( F  |`  ( ZZ>=
`  ( i  +  1 ) ) ) 
C_  ( F  |`  ( ZZ>= `  i )
) )
4543, 44syl 17 . . . . . . 7  |-  ( i  e.  Z  ->  ( F  |`  ( ZZ>= `  (
i  +  1 ) ) )  C_  ( F  |`  ( ZZ>= `  i
) ) )
46 rnss 5354 . . . . . . 7  |-  ( ( F  |`  ( ZZ>= `  ( i  +  1 ) ) )  C_  ( F  |`  ( ZZ>= `  i ) )  ->  ran  ( F  |`  ( ZZ>=
`  ( i  +  1 ) ) ) 
C_  ran  ( F  |`  ( ZZ>= `  i )
) )
4745, 46syl 17 . . . . . 6  |-  ( i  e.  Z  ->  ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) )  C_  ran  ( F  |`  ( ZZ>=
`  i ) ) )
4847adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) )  C_  ran  ( F  |`  ( ZZ>=
`  i ) ) )
49 rnresss 39365 . . . . . . . 8  |-  ran  ( F  |`  ( ZZ>= `  i
) )  C_  ran  F
5049a1i 11 . . . . . . 7  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  ran  F )
513frnd 39426 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  RR )
5251adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  Z )  ->  ran  F 
C_  RR )
5350, 52sstrd 3613 . . . . . 6  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  RR )
54 ressxr 10083 . . . . . . 7  |-  RR  C_  RR*
5554a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  Z )  ->  RR  C_ 
RR* )
5653, 55sstrd 3613 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  ran  ( F  |`  ( ZZ>= `  i ) )  C_  RR* )
57 supxrss 12162 . . . . 5  |-  ( ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) )  C_  ran  ( F  |`  ( ZZ>= `  i )
)  /\  ran  ( F  |`  ( ZZ>= `  i )
)  C_  RR* )  ->  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) )
5848, 56, 57syl2anc 693 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) )
59 eqidd 2623 . . . . . . 7  |-  ( i  e.  Z  ->  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) )  =  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) )
60 fveq2 6191 . . . . . . . . . . 11  |-  ( n  =  ( i  +  1 )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( i  +  1 ) ) )
6160reseq2d 5396 . . . . . . . . . 10  |-  ( n  =  ( i  +  1 )  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) )
6261rneqd 5353 . . . . . . . . 9  |-  ( n  =  ( i  +  1 )  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) )
6362supeq1d 8352 . . . . . . . 8  |-  ( n  =  ( i  +  1 )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  ( i  +  1 ) ) ) ,  RR* ,  <  )
)
6463adantl 482 . . . . . . 7  |-  ( ( i  e.  Z  /\  n  =  ( i  +  1 ) )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  ) )
651peano2uzs 11742 . . . . . . 7  |-  ( i  e.  Z  ->  (
i  +  1 )  e.  Z )
66 xrltso 11974 . . . . . . . . 9  |-  <  Or  RR*
6766supex 8369 . . . . . . . 8  |-  sup ( ran  ( F  |`  ( ZZ>=
`  ( i  +  1 ) ) ) ,  RR* ,  <  )  e.  _V
6867a1i 11 . . . . . . 7  |-  ( i  e.  Z  ->  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  )  e.  _V )
6959, 64, 65, 68fvmptd 6288 . . . . . 6  |-  ( i  e.  Z  ->  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  ( i  +  1 ) )  =  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  ) )
7069adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  ( i  +  1 ) )  =  sup ( ran  ( F  |`  ( ZZ>= `  ( i  +  1 ) ) ) ,  RR* ,  <  ) )
71 fveq2 6191 . . . . . . . . . . 11  |-  ( n  =  i  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  i )
)
7271reseq2d 5396 . . . . . . . . . 10  |-  ( n  =  i  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  i ) ) )
7372rneqd 5353 . . . . . . . . 9  |-  ( n  =  i  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  i )
) )
7473supeq1d 8352 . . . . . . . 8  |-  ( n  =  i  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )
)
7574adantl 482 . . . . . . 7  |-  ( ( i  e.  Z  /\  n  =  i )  ->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
76 id 22 . . . . . . 7  |-  ( i  e.  Z  ->  i  e.  Z )
7766supex 8369 . . . . . . . 8  |-  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  e.  _V
7877a1i 11 . . . . . . 7  |-  ( i  e.  Z  ->  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  )  e.  _V )
7959, 75, 76, 78fvmptd 6288 . . . . . 6  |-  ( i  e.  Z  ->  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  =  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
8079adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  =  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
8170, 80breq12d 4666 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  (
( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  ( i  +  1 ) )  <_  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  <->  sup ( ran  ( F  |`  ( ZZ>=
`  ( i  +  1 ) ) ) ,  RR* ,  <  )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) ) )
8258, 81mpbird 247 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  ( i  +  1 ) )  <_  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i ) )
83 nfcv 2764 . . . . . . . 8  |-  F/_ j F
843frexr 39604 . . . . . . . 8  |-  ( ph  ->  F : Z --> RR* )
8583, 2, 1, 84limsupre3uz 39968 . . . . . . 7  |-  ( ph  ->  ( ( limsup `  F
)  e.  RR  <->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  /\  E. x  e.  RR  E. i  e.  Z  A. j  e.  ( ZZ>= `  i )
( F `  j
)  <_  x )
) )
8612, 85mpbid 222 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  /\  E. x  e.  RR  E. i  e.  Z  A. j  e.  ( ZZ>= `  i )
( F `  j
)  <_  x )
)
8786simpld 475 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i ) x  <_ 
( F `  j
) )
88 simp-4r 807 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  e.  RR )
8988rexrd 10089 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  e.  RR* )
90843ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  F : Z --> RR* )
911uztrn2 11705 . . . . . . . . . . . . 13  |-  ( ( i  e.  Z  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  Z )
92913adant1 1079 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  Z
)
9390, 92ffvelrnd 6360 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR* )
9493ad5ant134 1313 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  ( F `  j )  e.  RR* )
9556supxrcld 39290 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Z )  ->  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  )  e.  RR* )
9695ad5ant13 1301 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  e.  RR* )
97 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  <_  ( F `  j ) )
98563adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ran  ( F  |`  ( ZZ>= `  i )
)  C_  RR* )
99 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  i
)  ->  ( ( F  |`  ( ZZ>= `  i
) ) `  j
)  =  ( F `
 j ) )
10099eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  i
)  ->  ( F `  j )  =  ( ( F  |`  ( ZZ>=
`  i ) ) `
 j ) )
1011003ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  =  ( ( F  |`  ( ZZ>=
`  i ) ) `
 j ) )
1023ffnd 6046 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  Fn  Z )
103102adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z )  ->  F  Fn  Z )
1041, 76uzssd2 39644 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  Z  ->  ( ZZ>=
`  i )  C_  Z )
105104adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  Z )  ->  ( ZZ>=
`  i )  C_  Z )
106 fnssres 6004 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  Z  /\  ( ZZ>= `  i )  C_  Z )  ->  ( F  |`  ( ZZ>= `  i
) )  Fn  ( ZZ>=
`  i ) )
107103, 105, 106syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  Z )  ->  ( F  |`  ( ZZ>= `  i
) )  Fn  ( ZZ>=
`  i ) )
1081073adant3 1081 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F  |`  ( ZZ>= `  i )
)  Fn  ( ZZ>= `  i ) )
109 simp3 1063 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  (
ZZ>= `  i ) )
110 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( ( F  |`  ( ZZ>=
`  i ) )  Fn  ( ZZ>= `  i
)  /\  j  e.  ( ZZ>= `  i )
)  ->  ( ( F  |`  ( ZZ>= `  i
) ) `  j
)  e.  ran  ( F  |`  ( ZZ>= `  i
) ) )
111108, 109, 110syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( F  |`  ( ZZ>= `  i )
) `  j )  e.  ran  ( F  |`  ( ZZ>= `  i )
) )
112101, 111eqeltrd 2701 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  ran  ( F  |`  ( ZZ>= `  i ) ) )
113 eqid 2622 . . . . . . . . . . . 12  |-  sup ( ran  ( F  |`  ( ZZ>=
`  i ) ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  )
11498, 112, 113supxrubd 39297 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Z  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
115114ad5ant134 1313 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  ( F `  j )  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
11689, 94, 96, 97, 115xrletrd 11993 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  /\  x  <_  ( F `  j ) )  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
117116ex 450 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z
)  /\  j  e.  ( ZZ>= `  i )
)  ->  ( x  <_  ( F `  j
)  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
118117rexlimdva 3031 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  i  e.  Z )  ->  ( E. j  e.  ( ZZ>=
`  i ) x  <_  ( F `  j )  ->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) ) )
119118ralimdva 2962 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. i  e.  Z  E. j  e.  ( ZZ>= `  i ) x  <_ 
( F `  j
)  ->  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
120119reximdva 3017 . . . . 5  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  E. j  e.  ( ZZ>= `  i )
x  <_  ( F `  j )  ->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
12187, 120mpd 15 . . . 4  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) )
122 simpl 473 . . . . . . 7  |-  ( ( y  =  x  /\  i  e.  Z )  ->  y  =  x )
12379adantl 482 . . . . . . 7  |-  ( ( y  =  x  /\  i  e.  Z )  ->  ( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  =  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
124122, 123breq12d 4666 . . . . . 6  |-  ( ( y  =  x  /\  i  e.  Z )  ->  ( y  <_  (
( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  <->  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) ) )
125124ralbidva 2985 . . . . 5  |-  ( y  =  x  ->  ( A. i  e.  Z  y  <_  ( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) `  i )  <->  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i
) ) ,  RR* ,  <  ) ) )
126125cbvrexv 3172 . . . 4  |-  ( E. y  e.  RR  A. i  e.  Z  y  <_  ( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) `  i )  <->  E. x  e.  RR  A. i  e.  Z  x  <_  sup ( ran  ( F  |`  ( ZZ>= `  i )
) ,  RR* ,  <  ) )
127121, 126sylibr 224 . . 3  |-  ( ph  ->  E. y  e.  RR  A. i  e.  Z  y  <_  ( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) `  i )
)
1281, 2, 34, 82, 127climinf 39838 . 2  |-  ( ph  ->  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  ~~> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) ,  RR ,  <  )
)
129 fveq2 6191 . . . . . . . 8  |-  ( n  =  k  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  k )
)
130129reseq2d 5396 . . . . . . 7  |-  ( n  =  k  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  k ) ) )
131130rneqd 5353 . . . . . 6  |-  ( n  =  k  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  k )
) )
132131supeq1d 8352 . . . . 5  |-  ( n  =  k  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
133132cbvmptv 4750 . . . 4  |-  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
134133a1i 11 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  =  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k
) ) ,  RR* ,  <  ) ) )
1352, 1, 3, 12limsupvaluz2 39970 . . . 4  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR ,  <  ) )
136135eqcomd 2628 . . 3  |-  ( ph  -> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR ,  <  )  =  ( limsup `  F ) )
137134, 136breq12d 4666 . 2  |-  ( ph  ->  ( ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) )  ~~> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) ,  RR ,  <  )  <->  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) )  ~~>  ( limsup `  F
) ) )
138128, 137mpbid 222 1  |-  ( ph  ->  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k
) ) ,  RR* ,  <  ) )  ~~>  ( limsup `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219
This theorem is referenced by:  supcnvlimsupmpt  39973
  Copyright terms: Public domain W3C validator