MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcadd Structured version   Visualization version   Unicode version

Theorem sadcadd 15180
Description: Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
Assertion
Ref Expression
sadcadd  |-  ( ph  ->  ( (/)  e.  ( C `  N )  <->  ( 2 ^ N )  <_  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadcadd
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2  |-  ( ph  ->  N  e.  NN0 )
2 fveq2 6191 . . . . . 6  |-  ( x  =  0  ->  ( C `  x )  =  ( C ` 
0 ) )
32eleq2d 2687 . . . . 5  |-  ( x  =  0  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  0 ) ) )
4 oveq2 6658 . . . . . . 7  |-  ( x  =  0  ->  (
2 ^ x )  =  ( 2 ^ 0 ) )
5 2cn 11091 . . . . . . . 8  |-  2  e.  CC
6 exp0 12864 . . . . . . . 8  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
75, 6ax-mp 5 . . . . . . 7  |-  ( 2 ^ 0 )  =  1
84, 7syl6eq 2672 . . . . . 6  |-  ( x  =  0  ->  (
2 ^ x )  =  1 )
9 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
0..^ x )  =  ( 0..^ 0 ) )
10 fzo0 12492 . . . . . . . . . . . . 13  |-  ( 0..^ 0 )  =  (/)
119, 10syl6eq 2672 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
0..^ x )  =  (/) )
1211ineq2d 3814 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  (/) ) )
13 in0 3968 . . . . . . . . . . 11  |-  ( A  i^i  (/) )  =  (/)
1412, 13syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  (/) )
1514fveq2d 6195 . . . . . . . . 9  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
16 sadcadd.k . . . . . . . . . . 11  |-  K  =  `' (bits  |`  NN0 )
17 0nn0 11307 . . . . . . . . . . . . 13  |-  0  e.  NN0
18 fvres 6207 . . . . . . . . . . . . 13  |-  ( 0  e.  NN0  ->  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 ) )
1917, 18ax-mp 5 . . . . . . . . . . . 12  |-  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 )
20 0bits 15161 . . . . . . . . . . . 12  |-  (bits ` 
0 )  =  (/)
2119, 20eqtr2i 2645 . . . . . . . . . . 11  |-  (/)  =  ( (bits  |`  NN0 ) ` 
0 )
2216, 21fveq12i 6196 . . . . . . . . . 10  |-  ( K `
 (/) )  =  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )
23 bitsf1o 15167 . . . . . . . . . . 11  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
24 f1ocnvfv1 6532 . . . . . . . . . . 11  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  0  e.  NN0 )  ->  ( `' (bits  |`  NN0 ) `  (
(bits  |`  NN0 ) ` 
0 ) )  =  0 )
2523, 17, 24mp2an 708 . . . . . . . . . 10  |-  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )  =  0
2622, 25eqtri 2644 . . . . . . . . 9  |-  ( K `
 (/) )  =  0
2715, 26syl6eq 2672 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  0 )
2811ineq2d 3814 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  (/) ) )
29 in0 3968 . . . . . . . . . . 11  |-  ( B  i^i  (/) )  =  (/)
3028, 29syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  (/) )
3130fveq2d 6195 . . . . . . . . 9  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
3231, 26syl6eq 2672 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  0 )
3327, 32oveq12d 6668 . . . . . . 7  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( 0  +  0 ) )
34 00id 10211 . . . . . . 7  |-  ( 0  +  0 )  =  0
3533, 34syl6eq 2672 . . . . . 6  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  0 )
368, 35breq12d 4666 . . . . 5  |-  ( x  =  0  ->  (
( 2 ^ x
)  <_  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  <->  1  <_  0 ) )
373, 36bibi12d 335 . . . 4  |-  ( x  =  0  ->  (
( (/)  e.  ( C `
 x )  <->  ( 2 ^ x )  <_ 
( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( (/)  e.  ( C `  0 )  <->  1  <_  0 ) ) )
3837imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( (/)  e.  ( C `  x
)  <->  ( 2 ^ x )  <_  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) ) )  <->  ( ph  ->  ( (/)  e.  ( C `  0 )  <->  1  <_  0 ) ) ) )
39 fveq2 6191 . . . . . 6  |-  ( x  =  k  ->  ( C `  x )  =  ( C `  k ) )
4039eleq2d 2687 . . . . 5  |-  ( x  =  k  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  k ) ) )
41 oveq2 6658 . . . . . 6  |-  ( x  =  k  ->  (
2 ^ x )  =  ( 2 ^ k ) )
42 oveq2 6658 . . . . . . . . 9  |-  ( x  =  k  ->  (
0..^ x )  =  ( 0..^ k ) )
4342ineq2d 3814 . . . . . . . 8  |-  ( x  =  k  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ k ) ) )
4443fveq2d 6195 . . . . . . 7  |-  ( x  =  k  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ k ) ) ) )
4542ineq2d 3814 . . . . . . . 8  |-  ( x  =  k  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ k ) ) )
4645fveq2d 6195 . . . . . . 7  |-  ( x  =  k  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ k ) ) ) )
4744, 46oveq12d 6668 . . . . . 6  |-  ( x  =  k  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )
4841, 47breq12d 4666 . . . . 5  |-  ( x  =  k  ->  (
( 2 ^ x
)  <_  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  <-> 
( 2 ^ k
)  <_  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) )
4940, 48bibi12d 335 . . . 4  |-  ( x  =  k  ->  (
( (/)  e.  ( C `
 x )  <->  ( 2 ^ x )  <_ 
( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( (/)  e.  ( C `  k )  <-> 
( 2 ^ k
)  <_  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) ) )
5049imbi2d 330 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( (/)  e.  ( C `  x
)  <->  ( 2 ^ x )  <_  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) ) )  <->  ( ph  ->  ( (/)  e.  ( C `  k )  <->  ( 2 ^ k )  <_  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) ) ) )
51 fveq2 6191 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( C `  x )  =  ( C `  ( k  +  1 ) ) )
5251eleq2d 2687 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  ( k  +  1 ) ) ) )
53 oveq2 6658 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
2 ^ x )  =  ( 2 ^ ( k  +  1 ) ) )
54 oveq2 6658 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
0..^ x )  =  ( 0..^ ( k  +  1 ) ) )
5554ineq2d 3814 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )
5655fveq2d 6195 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
5754ineq2d 3814 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) )
5857fveq2d 6195 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
5956, 58oveq12d 6668 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) )
6053, 59breq12d 4666 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( 2 ^ x
)  <_  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
6152, 60bibi12d 335 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( (/)  e.  ( C `
 x )  <->  ( 2 ^ x )  <_ 
( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( (/)  e.  ( C `  ( k  +  1 ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
6261imbi2d 330 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( (/)  e.  ( C `  x
)  <->  ( 2 ^ x )  <_  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) ) )  <->  ( ph  ->  ( (/)  e.  ( C `  ( k  +  1 ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) ) )
63 fveq2 6191 . . . . . 6  |-  ( x  =  N  ->  ( C `  x )  =  ( C `  N ) )
6463eleq2d 2687 . . . . 5  |-  ( x  =  N  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  N ) ) )
65 oveq2 6658 . . . . . 6  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
66 oveq2 6658 . . . . . . . . 9  |-  ( x  =  N  ->  (
0..^ x )  =  ( 0..^ N ) )
6766ineq2d 3814 . . . . . . . 8  |-  ( x  =  N  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ N ) ) )
6867fveq2d 6195 . . . . . . 7  |-  ( x  =  N  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ N ) ) ) )
6966ineq2d 3814 . . . . . . . 8  |-  ( x  =  N  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ N ) ) )
7069fveq2d 6195 . . . . . . 7  |-  ( x  =  N  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ N ) ) ) )
7168, 70oveq12d 6668 . . . . . 6  |-  ( x  =  N  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
7265, 71breq12d 4666 . . . . 5  |-  ( x  =  N  ->  (
( 2 ^ x
)  <_  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  <-> 
( 2 ^ N
)  <_  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) ) ) )
7364, 72bibi12d 335 . . . 4  |-  ( x  =  N  ->  (
( (/)  e.  ( C `
 x )  <->  ( 2 ^ x )  <_ 
( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( (/)  e.  ( C `  N )  <-> 
( 2 ^ N
)  <_  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) ) ) ) )
7473imbi2d 330 . . 3  |-  ( x  =  N  ->  (
( ph  ->  ( (/)  e.  ( C `  x
)  <->  ( 2 ^ x )  <_  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) ) )  <->  ( ph  ->  ( (/)  e.  ( C `  N )  <->  ( 2 ^ N )  <_  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) ) ) )
75 sadval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
76 sadval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
77 sadval.c . . . . 5  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
7875, 76, 77sadc0 15176 . . . 4  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
79 0lt1 10550 . . . . . 6  |-  0  <  1
80 0re 10040 . . . . . . 7  |-  0  e.  RR
81 1re 10039 . . . . . . 7  |-  1  e.  RR
8280, 81ltnlei 10158 . . . . . 6  |-  ( 0  <  1  <->  -.  1  <_  0 )
8379, 82mpbi 220 . . . . 5  |-  -.  1  <_  0
8483a1i 11 . . . 4  |-  ( ph  ->  -.  1  <_  0
)
8578, 842falsed 366 . . 3  |-  ( ph  ->  ( (/)  e.  ( C `  0 )  <->  1  <_  0 ) )
8675ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  A  C_  NN0 )
8776ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  B  C_  NN0 )
88 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  k  e.  NN0 )
89 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  ( (/)  e.  ( C `  k )  <-> 
( 2 ^ k
)  <_  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) )
9086, 87, 77, 88, 16, 89sadcaddlem 15179 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  ( (/)  e.  ( C `  ( k  +  1 ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
9190ex 450 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( (/) 
e.  ( C `  k )  <->  ( 2 ^ k )  <_ 
( ( K `  ( A  i^i  (
0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )  -> 
( (/)  e.  ( C `
 ( k  +  1 ) )  <->  ( 2 ^ ( k  +  1 ) )  <_ 
( ( K `  ( A  i^i  (
0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
9291expcom 451 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( (/)  e.  ( C `  k )  <-> 
( 2 ^ k
)  <_  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  ( (/)  e.  ( C `  ( k  +  1 ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) ) )
9392a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( (/)  e.  ( C `  k )  <-> 
( 2 ^ k
)  <_  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) )  ->  ( ph  ->  ( (/)  e.  ( C `  ( k  +  1 ) )  <-> 
( 2 ^ (
k  +  1 ) )  <_  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) ) )
9438, 50, 62, 74, 85, 93nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( (/)  e.  ( C `  N )  <->  ( 2 ^ N )  <_  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) ) )
951, 94mpcom 38 1  |-  ( ph  ->  ( (/)  e.  ( C `  N )  <->  ( 2 ^ N )  <_  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483  caddwcad 1545    e. wcel 1990    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   NN0cn0 11292  ..^cfzo 12465    seqcseq 12801   ^cexp 12860  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator