MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtub Structured version   Visualization version   Unicode version

Theorem chtub 24937
Description: An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
Assertion
Ref Expression
chtub  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  N )  <  ( ( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )

Proof of Theorem chtub
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( ( |_ `  N )  =  2  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  2 )
)
2 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
3 1lt2 11194 . . . . . . . . . . 11  |-  1  <  2
4 rplogcl 24350 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
52, 3, 4mp2an 708 . . . . . . . . . 10  |-  ( log `  2 )  e.  RR+
6 elrp 11834 . . . . . . . . . 10  |-  ( ( log `  2 )  e.  RR+  <->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
75, 6mpbi 220 . . . . . . . . 9  |-  ( ( log `  2 )  e.  RR  /\  0  <  ( log `  2
) )
87simpli 474 . . . . . . . 8  |-  ( log `  2 )  e.  RR
98recni 10052 . . . . . . 7  |-  ( log `  2 )  e.  CC
109mulid1i 10042 . . . . . 6  |-  ( ( log `  2 )  x.  1 )  =  ( log `  2
)
11 cht2 24898 . . . . . 6  |-  ( theta `  2 )  =  ( log `  2
)
1210, 11eqtr4i 2647 . . . . 5  |-  ( ( log `  2 )  x.  1 )  =  ( theta `  2 )
131, 12syl6reqr 2675 . . . 4  |-  ( ( |_ `  N )  =  2  ->  (
( log `  2
)  x.  1 )  =  ( theta `  ( |_ `  N ) ) )
14 chtfl 24875 . . . . 5  |-  ( N  e.  RR  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  N )
)
1514adantr 481 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  ( |_ `  N ) )  =  ( theta `  N )
)
1613, 15sylan9eqr 2678 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  x.  1 )  =  (
theta `  N ) )
17 2t2e4 11177 . . . . . . 7  |-  ( 2  x.  2 )  =  4
18 df-4 11081 . . . . . . 7  |-  4  =  ( 3  +  1 )
1917, 18eqtri 2644 . . . . . 6  |-  ( 2  x.  2 )  =  ( 3  +  1 )
20 simplr 792 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  2  <  N )
212a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  2  e.  RR )
22 simpl 473 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  2  <  N )  ->  N  e.  RR )
2322adantr 481 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  N  e.  RR )
24 2pos 11112 . . . . . . . . . 10  |-  0  <  2
252, 24pm3.2i 471 . . . . . . . . 9  |-  ( 2  e.  RR  /\  0  <  2 )
2625a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  e.  RR  /\  0  <  2 ) )
27 ltmul2 10874 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 2  < 
N  <->  ( 2  x.  2 )  <  (
2  x.  N ) ) )
2821, 23, 26, 27syl3anc 1326 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  <  N  <->  ( 2  x.  2 )  < 
( 2  x.  N
) ) )
2920, 28mpbid 222 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  x.  2 )  < 
( 2  x.  N
) )
3019, 29syl5eqbrr 4689 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 3  +  1 )  < 
( 2  x.  N
) )
31 3re 11094 . . . . . . 7  |-  3  e.  RR
3231a1i 11 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  3  e.  RR )
33 1red 10055 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  1  e.  RR )
34 remulcl 10021 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  x.  N
)  e.  RR )
352, 22, 34sylancr 695 . . . . . . 7  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( 2  x.  N
)  e.  RR )
3635adantr 481 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  x.  N )  e.  RR )
3732, 33, 36ltaddsub2d 10628 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( (
3  +  1 )  <  ( 2  x.  N )  <->  1  <  ( ( 2  x.  N
)  -  3 ) ) )
3830, 37mpbid 222 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  1  <  ( ( 2  x.  N
)  -  3 ) )
39 resubcl 10345 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  N )  -  3 )  e.  RR )
4035, 31, 39sylancl 694 . . . . . 6  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( ( 2  x.  N )  -  3 )  e.  RR )
4140adantr 481 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( (
2  x.  N )  -  3 )  e.  RR )
427a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
43 ltmul2 10874 . . . . 5  |-  ( ( 1  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( 1  <  (
( 2  x.  N
)  -  3 )  <-> 
( ( log `  2
)  x.  1 )  <  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) ) )
4433, 41, 42, 43syl3anc 1326 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 1  <  ( ( 2  x.  N )  - 
3 )  <->  ( ( log `  2 )  x.  1 )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) ) )
4538, 44mpbid 222 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  x.  1 )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
4616, 45eqbrtrrd 4677 . 2  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( theta `  N )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
47 chtcl 24835 . . . 4  |-  ( N  e.  RR  ->  ( theta `  N )  e.  RR )
4847ad2antrr 762 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  e.  RR )
49 reflcl 12597 . . . . . . 7  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  RR )
5049ad2antrr 762 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  RR )
51 remulcl 10021 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( |_ `  N )  e.  RR )  -> 
( 2  x.  ( |_ `  N ) )  e.  RR )
522, 50, 51sylancr 695 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  ( |_ `  N
) )  e.  RR )
53 resubcl 10345 . . . . 5  |-  ( ( ( 2  x.  ( |_ `  N ) )  e.  RR  /\  3  e.  RR )  ->  (
( 2  x.  ( |_ `  N ) )  -  3 )  e.  RR )
5452, 31, 53sylancl 694 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  ( |_ `  N ) )  - 
3 )  e.  RR )
55 remulcl 10021 . . . 4  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  ( |_ `  N
) )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  e.  RR )
568, 54, 55sylancr 695 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  e.  RR )
5740adantr 481 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  N )  - 
3 )  e.  RR )
58 remulcl 10021 . . . 4  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) )  e.  RR )
598, 57, 58sylancr 695 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) )  e.  RR )
6015adantr 481 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  N
) )
61 simpr 477 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )
62 df-3 11080 . . . . . . 7  |-  3  =  ( 2  +  1 )
6362fveq2i 6194 . . . . . 6  |-  ( ZZ>= ` 
3 )  =  (
ZZ>= `  ( 2  +  1 ) )
6461, 63syl6eleqr 2712 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  (
ZZ>= `  3 ) )
65 eluzfz2 12349 . . . . . 6  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( |_ `  N )  e.  ( 3 ... ( |_
`  N ) ) )
66 3z 11410 . . . . . . 7  |-  3  e.  ZZ
67 oveq2 6658 . . . . . . . 8  |-  ( x  =  3  ->  (
3 ... x )  =  ( 3 ... 3
) )
6867raleqdv 3144 . . . . . . 7  |-  ( x  =  3  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... 3 ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
69 oveq2 6658 . . . . . . . 8  |-  ( x  =  n  ->  (
3 ... x )  =  ( 3 ... n
) )
7069raleqdv 3144 . . . . . . 7  |-  ( x  =  n  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
71 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
3 ... x )  =  ( 3 ... (
n  +  1 ) ) )
7271raleqdv 3144 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... ( n  + 
1 ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
73 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( |_ `  N )  ->  (
3 ... x )  =  ( 3 ... ( |_ `  N ) ) )
7473raleqdv 3144 . . . . . . 7  |-  ( x  =  ( |_ `  N )  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... ( |_ `  N ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
75 6lt8 11216 . . . . . . . . . . 11  |-  6  <  8
76 6re 11101 . . . . . . . . . . . . 13  |-  6  e.  RR
77 6pos 11119 . . . . . . . . . . . . 13  |-  0  <  6
7876, 77elrpii 11835 . . . . . . . . . . . 12  |-  6  e.  RR+
79 8re 11105 . . . . . . . . . . . . 13  |-  8  e.  RR
80 8pos 11121 . . . . . . . . . . . . 13  |-  0  <  8
8179, 80elrpii 11835 . . . . . . . . . . . 12  |-  8  e.  RR+
82 logltb 24346 . . . . . . . . . . . 12  |-  ( ( 6  e.  RR+  /\  8  e.  RR+ )  ->  (
6  <  8  <->  ( log `  6 )  <  ( log `  8 ) ) )
8378, 81, 82mp2an 708 . . . . . . . . . . 11  |-  ( 6  <  8  <->  ( log `  6 )  <  ( log `  8 ) )
8475, 83mpbi 220 . . . . . . . . . 10  |-  ( log `  6 )  < 
( log `  8
)
8584a1i 11 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  ( log `  6 )  < 
( log `  8
) )
86 elfz1eq 12352 . . . . . . . . . . 11  |-  ( k  e.  ( 3 ... 3 )  ->  k  =  3 )
8786fveq2d 6195 . . . . . . . . . 10  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  =  ( theta `  3 )
)
88 cht3 24899 . . . . . . . . . 10  |-  ( theta `  3 )  =  ( log `  6
)
8987, 88syl6eq 2672 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  =  ( log `  6
) )
9086oveq2d 6666 . . . . . . . . . . . . 13  |-  ( k  e.  ( 3 ... 3 )  ->  (
2  x.  k )  =  ( 2  x.  3 ) )
9190oveq1d 6665 . . . . . . . . . . . 12  |-  ( k  e.  ( 3 ... 3 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  3 )  - 
3 ) )
92 3cn 11095 . . . . . . . . . . . . . . 15  |-  3  e.  CC
93922timesi 11147 . . . . . . . . . . . . . 14  |-  ( 2  x.  3 )  =  ( 3  +  3 )
9493oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2  x.  3 )  -  3 )  =  ( ( 3  +  3 )  -  3 )
9592, 92pncan3oi 10297 . . . . . . . . . . . . 13  |-  ( ( 3  +  3 )  -  3 )  =  3
9694, 95eqtri 2644 . . . . . . . . . . . 12  |-  ( ( 2  x.  3 )  -  3 )  =  3
9791, 96syl6eq 2672 . . . . . . . . . . 11  |-  ( k  e.  ( 3 ... 3 )  ->  (
( 2  x.  k
)  -  3 )  =  3 )
9897oveq2d 6666 . . . . . . . . . 10  |-  ( k  e.  ( 3 ... 3 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  3 ) )
99 2rp 11837 . . . . . . . . . . . . . . 15  |-  2  e.  RR+
100 relogcl 24322 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
10199, 100ax-mp 5 . . . . . . . . . . . . . 14  |-  ( log `  2 )  e.  RR
102101recni 10052 . . . . . . . . . . . . 13  |-  ( log `  2 )  e.  CC
103102, 92mulcomi 10046 . . . . . . . . . . . 12  |-  ( ( log `  2 )  x.  3 )  =  ( 3  x.  ( log `  2 ) )
104 relogexp 24342 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  3  e.  ZZ )  ->  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) ) )
10599, 66, 104mp2an 708 . . . . . . . . . . . 12  |-  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) )
106103, 105eqtr4i 2647 . . . . . . . . . . 11  |-  ( ( log `  2 )  x.  3 )  =  ( log `  (
2 ^ 3 ) )
107 cu2 12963 . . . . . . . . . . . 12  |-  ( 2 ^ 3 )  =  8
108107fveq2i 6194 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 3 ) )  =  ( log `  8 )
109106, 108eqtri 2644 . . . . . . . . . 10  |-  ( ( log `  2 )  x.  3 )  =  ( log `  8
)
11098, 109syl6eq 2672 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( log `  8
) )
11185, 89, 1103brtr4d 4685 . . . . . . . 8  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
112111rgen 2922 . . . . . . 7  |-  A. k  e.  ( 3 ... 3
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )
113 df-2 11079 . . . . . . . . . . . . . . . . . 18  |-  2  =  ( 1  +  1 )
114 2div2e1 11150 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  /  2 )  =  1
115 eluzle 11700 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  <_  n )
11662, 115syl5eqbrr 4689 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  +  1 )  <_  n )
117 2z 11409 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  ZZ
118 eluzelz 11697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  ZZ )
119 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  <  n  <->  ( 2  +  1 )  <_  n ) )
120117, 118, 119sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  <  n  <->  ( 2  +  1 )  <_  n ) )
121116, 120mpbird 247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  2  <  n )
122 eluzelre 11698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  RR )
123 ltdiv1 10887 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 2  < 
n  <->  ( 2  / 
2 )  <  (
n  /  2 ) ) )
1242, 25, 123mp3an13 1415 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  RR  ->  (
2  <  n  <->  ( 2  /  2 )  < 
( n  /  2
) ) )
125122, 124syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  <  n  <->  ( 2  /  2 )  < 
( n  /  2
) ) )
126121, 125mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  /  2 )  < 
( n  /  2
) )
127114, 126syl5eqbrr 4689 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  <  ( n  /  2 ) )
128122rehalfcld 11279 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  /  2 )  e.  RR )
129 1re 10039 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
130 ltadd1 10495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  ( n  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( 1  <  (
n  /  2 )  <-> 
( 1  +  1 )  <  ( ( n  /  2 )  +  1 ) ) )
131129, 129, 130mp3an13 1415 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  2 )  e.  RR  ->  (
1  <  ( n  /  2 )  <->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) ) )
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  <  ( n  / 
2 )  <->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) ) )
133127, 132mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) )
134113, 133syl5eqbr 4688 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  2  <  ( ( n  /  2
)  +  1 ) )
135134adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
2  <  ( (
n  /  2 )  +  1 ) )
136 peano2z 11418 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  /  2 )  e.  ZZ  ->  (
( n  /  2
)  +  1 )  e.  ZZ )
137136adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ZZ )
138 zltp1le 11427 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  ZZ  /\  ( ( n  / 
2 )  +  1 )  e.  ZZ )  ->  ( 2  < 
( ( n  / 
2 )  +  1 )  <->  ( 2  +  1 )  <_  (
( n  /  2
)  +  1 ) ) )
139117, 137, 138sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  <  (
( n  /  2
)  +  1 )  <-> 
( 2  +  1 )  <_  ( (
n  /  2 )  +  1 ) ) )
140135, 139mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  +  1 )  <_  ( (
n  /  2 )  +  1 ) )
14162, 140syl5eqbr 4688 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
3  <_  ( (
n  /  2 )  +  1 ) )
142 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  e.  RR )
143 ltle 10126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( n  /  2
)  e.  RR )  ->  ( 1  < 
( n  /  2
)  ->  1  <_  ( n  /  2 ) ) )
144129, 128, 143sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  <  ( n  / 
2 )  ->  1  <_  ( n  /  2
) ) )
145127, 144mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  <_  ( n  /  2 ) )
146142, 128, 128, 145leadd2dd 10642 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  1 )  <_ 
( ( n  / 
2 )  +  ( n  /  2 ) ) )
147122recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  CC )
1481472halvesd 11278 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  ( n  / 
2 ) )  =  n )
149146, 148breqtrd 4679 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  1 )  <_  n )
150149adantr 481 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  <_  n )
151 elfz 12332 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  / 
2 )  +  1 )  e.  ZZ  /\  3  e.  ZZ  /\  n  e.  ZZ )  ->  (
( ( n  / 
2 )  +  1 )  e.  ( 3 ... n )  <->  ( 3  <_  ( ( n  /  2 )  +  1 )  /\  (
( n  /  2
)  +  1 )  <_  n ) ) )
15266, 151mp3an2 1412 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  / 
2 )  +  1 )  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( n  /  2 )  +  1 )  e.  ( 3 ... n )  <-> 
( 3  <_  (
( n  /  2
)  +  1 )  /\  ( ( n  /  2 )  +  1 )  <_  n
) ) )
153136, 118, 152syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( n  /  2 )  +  1 )  e.  ( 3 ... n )  <-> 
( 3  <_  (
( n  /  2
)  +  1 )  /\  ( ( n  /  2 )  +  1 )  <_  n
) ) )
154141, 150, 153mpbir2and 957 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ( 3 ... n ) )
155 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  ( theta `  k )  =  ( theta `  ( (
n  /  2 )  +  1 ) ) )
156 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
2  x.  k )  =  ( 2  x.  ( ( n  / 
2 )  +  1 ) ) )
157156oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )
158157oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 ) ) )
159155, 158breq12d 4666 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( (
n  /  2 )  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 ) ) ) )
160159rspcv 3305 . . . . . . . . . . . . 13  |-  ( ( ( n  /  2
)  +  1 )  e.  ( 3 ... n )  ->  ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) ) ) )
161154, 160syl 17 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( ( n  /  2 )  +  1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  -  3 ) ) ) )
162128recnd 10068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  /  2 )  e.  CC )
163162adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  /  2
)  e.  CC )
164 2cn 11091 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  CC
165 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
166 adddi 10025 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( n  /  2
)  e.  CC  /\  1  e.  CC )  ->  ( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( ( 2  x.  ( n  /  2 ) )  +  ( 2  x.  1 ) ) )
167164, 165, 166mp3an13 1415 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  2 )  e.  CC  ->  (
2  x.  ( ( n  /  2 )  +  1 ) )  =  ( ( 2  x.  ( n  / 
2 ) )  +  ( 2  x.  1 ) ) )
168163, 167syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( ( 2  x.  ( n  /  2 ) )  +  ( 2  x.  1 ) ) )
169147adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  ->  n  e.  CC )
170 2ne0 11113 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  =/=  0
171 divcan2 10693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( n  /  2 ) )  =  n )
172164, 170, 171mp3an23 1416 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  CC  ->  (
2  x.  ( n  /  2 ) )  =  n )
173169, 172syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  /  2 ) )  =  n )
174164mulid1i 10042 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  1 )  =  2
175174a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  1 )  =  2 )
176173, 175oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  /  2
) )  +  ( 2  x.  1 ) )  =  ( n  +  2 ) )
177168, 176eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( n  +  2 ) )
178177oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 )  =  ( ( n  +  2 )  -  3 ) )
179 2p1e3 11151 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
18092, 164, 165, 179subaddrii 10370 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  -  2 )  =  1
181180oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( n  -  ( 3  -  2 ) )  =  ( n  -  1 )
182 subsub3 10313 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  CC  /\  3  e.  CC  /\  2  e.  CC )  ->  (
n  -  ( 3  -  2 ) )  =  ( ( n  +  2 )  - 
3 ) )
18392, 164, 182mp3an23 1416 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  CC  ->  (
n  -  ( 3  -  2 ) )  =  ( ( n  +  2 )  - 
3 ) )
184169, 183syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  (
3  -  2 ) )  =  ( ( n  +  2 )  -  3 ) )
185181, 184syl5reqr 2671 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  3 )  =  ( n  -  1 ) )
186178, 185eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 )  =  ( n  -  1 ) )
187186oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  -  3 ) )  =  ( ( log `  2 )  x.  ( n  -  1 ) ) )
188187breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  <->  ( theta `  ( ( n  / 
2 )  +  1 ) )  <  (
( log `  2
)  x.  ( n  -  1 ) ) ) )
189137zred 11482 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  RR )
190 chtcl 24835 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  /  2
)  +  1 )  e.  RR  ->  ( theta `  ( ( n  /  2 )  +  1 ) )  e.  RR )
191189, 190syl 17 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
n  /  2 )  +  1 ) )  e.  RR )
192122adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  ->  n  e.  RR )
193 peano2rem 10348 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
194192, 193syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  1 )  e.  RR )
195 remulcl 10021 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  ( n  -  1
)  e.  RR )  ->  ( ( log `  2 )  x.  ( n  -  1 ) )  e.  RR )
196101, 194, 195sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( n  -  1 ) )  e.  RR )
197 remulcl 10021 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  n  e.  RR )  ->  ( ( log `  2
)  x.  n )  e.  RR )
198101, 192, 197sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  n )  e.  RR )
199191, 196, 198ltadd1d 10620 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( n  - 
1 ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( ( log `  2
)  x.  ( n  -  1 ) )  +  ( ( log `  2 )  x.  n ) ) ) )
200102a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( log `  2
)  e.  CC )
201194recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  1 )  e.  CC )
202200, 201, 169adddid 10064 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( n  -  1 )  +  n ) )  =  ( ( ( log `  2 )  x.  ( n  - 
1 ) )  +  ( ( log `  2
)  x.  n ) ) )
203 adddi 10025 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  n  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
204164, 165, 203mp3an13 1415 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  CC  ->  (
2  x.  ( n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
205169, 204syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
206174oveq2i 6661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  n )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  n )  +  2 )
207205, 206syl6eq 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  +  1 ) )  =  ( ( 2  x.  n )  +  2 ) )
208207oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  +  1 ) )  -  3 )  =  ( ( ( 2  x.  n
)  +  2 )  -  3 ) )
209 zmulcl 11426 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  ZZ )
210117, 118, 209sylancr 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  ZZ )
211210zcnd 11483 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  CC )
212211adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  n
)  e.  CC )
213 subsub3 10313 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2  x.  n
)  e.  CC  /\  3  e.  CC  /\  2  e.  CC )  ->  (
( 2  x.  n
)  -  ( 3  -  2 ) )  =  ( ( ( 2  x.  n )  +  2 )  - 
3 ) )
21492, 164, 213mp3an23 1416 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  n )  e.  CC  ->  (
( 2  x.  n
)  -  ( 3  -  2 ) )  =  ( ( ( 2  x.  n )  +  2 )  - 
3 ) )
215212, 214syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  (
3  -  2 ) )  =  ( ( ( 2  x.  n
)  +  2 )  -  3 ) )
216180oveq2i 6661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  n )  -  ( 3  -  2 ) )  =  ( ( 2  x.  n )  -  1 )
2171692timesd 11275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  n
)  =  ( n  +  n ) )
218217oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  1 )  =  ( ( n  +  n )  -  1 ) )
219165a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
1  e.  CC )
220169, 169, 219addsubd 10413 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  +  n )  -  1 )  =  ( ( n  -  1 )  +  n ) )
221218, 220eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  1 )  =  ( ( n  -  1 )  +  n ) )
222216, 221syl5eq 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  (
3  -  2 ) )  =  ( ( n  -  1 )  +  n ) )
223208, 215, 2223eqtr2rd 2663 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  - 
1 )  +  n
)  =  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )
224223oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( n  -  1 )  +  n ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
225202, 224eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( log `  2 )  x.  ( n  -  1 ) )  +  ( ( log `  2
)  x.  n ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) )
226225breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( ( log `  2
)  x.  ( n  -  1 ) )  +  ( ( log `  2 )  x.  n ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
227188, 199, 2263bitrd 294 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
228 3nn 11186 . . . . . . . . . . . . . . . . 17  |-  3  e.  NN
229 elfzuz 12338 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  /  2
)  +  1 )  e.  ( 3 ... n )  ->  (
( n  /  2
)  +  1 )  e.  ( ZZ>= `  3
) )
230154, 229syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ( ZZ>= ` 
3 ) )
231 eluznn 11758 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  NN  /\  ( ( n  / 
2 )  +  1 )  e.  ( ZZ>= ` 
3 ) )  -> 
( ( n  / 
2 )  +  1 )  e.  NN )
232228, 230, 231sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  NN )
233 chtublem 24936 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  /  2
)  +  1 )  e.  NN  ->  ( theta `  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
1 ) )  <_ 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  4 )  x.  ( ( ( n  /  2 )  +  1 )  - 
1 ) ) ) )
234232, 233syl 17 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
2  x.  ( ( n  /  2 )  +  1 ) )  -  1 ) )  <_  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) ) ) )
235177oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  1 )  =  ( ( n  +  2 )  -  1 ) )
236 addsubass 10291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( n  +  2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
237164, 165, 236mp3an23 1416 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  CC  ->  (
( n  +  2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
238169, 237syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
239 2m1e1 11135 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
240239oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( n  +  ( 2  -  1 ) )  =  ( n  +  1 )
241238, 240syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  1 )  =  ( n  +  1 ) )
242235, 241eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  1 )  =  ( n  +  1 ) )
243242fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
2  x.  ( ( n  /  2 )  +  1 ) )  -  1 ) )  =  ( theta `  (
n  +  1 ) ) )
244 pncan 10287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  /  2
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( n  /  2 )  +  1 )  -  1 )  =  ( n  /  2 ) )
245163, 165, 244sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( n  /  2 )  +  1 )  -  1 )  =  ( n  /  2 ) )
246245oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) )  =  ( ( log `  4 )  x.  ( n  /  2
) ) )
247 relogexp 24342 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) ) )
24899, 117, 247mp2an 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) )
249 sq2 12960 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2 ^ 2 )  =  4
250249fveq2i 6194 . . . . . . . . . . . . . . . . . . . 20  |-  ( log `  ( 2 ^ 2 ) )  =  ( log `  4 )
251164, 102mulcomi 10046 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  ( log `  2
) )  =  ( ( log `  2
)  x.  2 )
252248, 250, 2513eqtr3i 2652 . . . . . . . . . . . . . . . . . . 19  |-  ( log `  4 )  =  ( ( log `  2
)  x.  2 )
253252oveq1i 6660 . . . . . . . . . . . . . . . . . 18  |-  ( ( log `  4 )  x.  ( n  / 
2 ) )  =  ( ( ( log `  2 )  x.  2 )  x.  (
n  /  2 ) )
254164a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
2  e.  CC )
255200, 254, 163mulassd 10063 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( log `  2 )  x.  2 )  x.  (
n  /  2 ) )  =  ( ( log `  2 )  x.  ( 2  x.  ( n  /  2
) ) ) )
256253, 255syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( n  /  2 ) )  =  ( ( log `  2 )  x.  ( 2  x.  (
n  /  2 ) ) ) )
257173oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( 2  x.  ( n  / 
2 ) ) )  =  ( ( log `  2 )  x.  n ) )
258246, 256, 2573eqtrd 2660 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) )  =  ( ( log `  2 )  x.  n ) )
259258oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  4 )  x.  ( ( ( n  /  2 )  +  1 )  - 
1 ) ) )  =  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) ) )
260234, 243, 2593brtr3d 4684 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  <_  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) ) )
261 peano2uz 11741 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ( ZZ>= `  3 )
)
262 eluzelz 11697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  +  1 )  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ZZ )
263261, 262syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ZZ )
264263zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  RR )
265264adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  +  1 )  e.  RR )
266 chtcl 24835 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  RR  ->  ( theta `  ( n  + 
1 ) )  e.  RR )
267265, 266syl 17 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  e.  RR )
268191, 198readdcld 10069 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  e.  RR )
269 zmulcl 11426 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ZZ  /\  ( n  +  1
)  e.  ZZ )  ->  ( 2  x.  ( n  +  1 ) )  e.  ZZ )
270117, 263, 269sylancr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  ( n  + 
1 ) )  e.  ZZ )
271270zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  ( n  + 
1 ) )  e.  RR )
272 resubcl 10345 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  (
n  +  1 ) )  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
273271, 31, 272sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
274273adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
275 remulcl 10021 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
276101, 274, 275sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
277 lelttr 10128 . . . . . . . . . . . . . . 15  |-  ( ( ( theta `  ( n  +  1 ) )  e.  RR  /\  (
( theta `  ( (
n  /  2 )  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  e.  RR )  ->  (
( ( theta `  (
n  +  1 ) )  <_  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  /\  ( (
theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) )  ->  ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
278267, 268, 276, 277syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( n  +  1 ) )  <_  (
( theta `  ( (
n  /  2 )  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  /\  ( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
279260, 278mpand 711 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
280227, 279sylbid 230 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
281161, 280syld 47 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
282 eluzfz2 12349 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  ( 3 ... n
) )
283 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  ( theta `  k )  =  ( theta `  n )
)
284 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
285284oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  n )  - 
3 ) )
286285oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) )
287283, 286breq12d 4666 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) ) ) )
288287rspcv 3305 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 3 ... n )  ->  ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) ) )
289282, 288syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) ) )
290289adantr 481 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) ) ) )
291210zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  RR )
29231a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  e.  RR )
293122ltp1d 10954 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  <  ( n  +  1 ) )
29425a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
295 ltmul2 10874 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  RR  /\  ( n  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( n  <  ( n  +  1 )  <->  ( 2  x.  n )  <  (
2  x.  ( n  +  1 ) ) ) )
296122, 264, 294, 295syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  <  ( n  +  1 )  <->  ( 2  x.  n )  <  (
2  x.  ( n  +  1 ) ) ) )
297293, 296mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  < 
( 2  x.  (
n  +  1 ) ) )
298291, 271, 292, 297ltsub1dd 10639 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  n )  -  3 )  < 
( ( 2  x.  ( n  +  1 ) )  -  3 ) )
299 resubcl 10345 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  n
)  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  n )  -  3 )  e.  RR )
300291, 31, 299sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  n )  -  3 )  e.  RR )
3017a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
302 ltmul2 10874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2  x.  n )  -  3 )  e.  RR  /\  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( ( ( 2  x.  n )  - 
3 )  <  (
( 2  x.  (
n  +  1 ) )  -  3 )  <-> 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
303300, 273, 301, 302syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( 2  x.  n
)  -  3 )  <  ( ( 2  x.  ( n  + 
1 ) )  - 
3 )  <->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
304298, 303mpbid 222 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
305 chtcl 24835 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR  ->  ( theta `  n )  e.  RR )
306122, 305syl 17 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( theta `  n )  e.  RR )
307 remulcl 10021 . . . . . . . . . . . . . . . . 17  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  n )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  e.  RR )
308101, 300, 307sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  e.  RR )
309101, 273, 275sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
310 lttr 10114 . . . . . . . . . . . . . . . 16  |-  ( ( ( theta `  n )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  n )  - 
3 ) )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  e.  RR )  ->  (
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  /\  (
( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  -> 
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
311306, 308, 309, 310syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  /\  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  ->  ( theta `  n )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
312304, 311mpan2d 710 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
313312adantr 481 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
314118adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  ->  n  e.  ZZ )
315 dvdsval2 14986 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
n  +  1 )  e.  ZZ )  -> 
( 2  ||  (
n  +  1 )  <-> 
( ( n  + 
1 )  /  2
)  e.  ZZ ) )
316117, 170, 315mp3an12 1414 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  +  1 )  e.  ZZ  ->  (
2  ||  ( n  +  1 )  <->  ( (
n  +  1 )  /  2 )  e.  ZZ ) )
317263, 316syl 17 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2 
||  ( n  + 
1 )  <->  ( (
n  +  1 )  /  2 )  e.  ZZ ) )
318 2lt3 11195 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  <  3
3192, 31ltnlei 10158 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  <  3  <->  -.  3  <_  2 )
320318, 319mpbi 220 . . . . . . . . . . . . . . . . . . . . . . 23  |-  -.  3  <_  2
321 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  =  ( n  + 
1 )  ->  (
3  <_  2  <->  3  <_  ( n  +  1 ) ) )
322320, 321mtbii 316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  =  ( n  + 
1 )  ->  -.  3  <_  ( n  + 
1 ) )
323 eluzle 11700 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  +  1 )  e.  ( ZZ>= `  3
)  ->  3  <_  ( n  +  1 ) )
324261, 323syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  <_  ( n  +  1 ) )
325322, 324nsyl3 133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  -.  2  =  ( n  + 
1 ) )
326325adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  -.  2  =  ( n  +  1 ) )
327 uzid 11702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
328117, 327ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  ( ZZ>= `  2 )
329 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  (
n  +  1 )  e.  Prime )
330 dvdsprm 15415 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  (
n  +  1 )  e.  Prime )  ->  (
2  ||  ( n  +  1 )  <->  2  =  ( n  +  1
) ) )
331328, 329, 330sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  (
2  ||  ( n  +  1 )  <->  2  =  ( n  +  1
) ) )
332326, 331mtbird 315 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  -.  2  ||  ( n  + 
1 ) )
333332ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  +  1 )  e.  Prime  ->  -.  2  ||  ( n  +  1 ) ) )
334333con2d 129 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2 
||  ( n  + 
1 )  ->  -.  ( n  +  1
)  e.  Prime )
)
335317, 334sylbird 250 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( n  +  1 )  /  2 )  e.  ZZ  ->  -.  ( n  +  1
)  e.  Prime )
)
336335imp 445 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  ->  -.  ( n  +  1 )  e.  Prime )
337 chtnprm 24880 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ZZ  /\  -.  ( n  +  1 )  e.  Prime )  ->  ( theta `  ( n  +  1 ) )  =  ( theta `  n
) )
338314, 336, 337syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  =  ( theta `  n
) )
339338breq1d 4663 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  <->  ( theta `  n )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
340313, 339sylibrd 249 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
341290, 340syld 47 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
342 zeo 11463 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( n  /  2
)  e.  ZZ  \/  ( ( n  + 
1 )  /  2
)  e.  ZZ ) )
343118, 342syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  e.  ZZ  \/  (
( n  +  1 )  /  2 )  e.  ZZ ) )
344281, 341, 343mpjaodan 827 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
345 ovex 6678 . . . . . . . . . . 11  |-  ( n  +  1 )  e. 
_V
346 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( theta `  k )  =  ( theta `  ( n  +  1 ) ) )
347 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
2  x.  k )  =  ( 2  x.  ( n  +  1 ) ) )
348347oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )
349348oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
350346, 349breq12d 4666 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
351345, 350ralsn 4222 . . . . . . . . . 10  |-  ( A. k  e.  { (
n  +  1 ) }  ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  <->  ( theta `  ( n  +  1 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
352344, 351syl6ibr 242 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  A. k  e.  {
( n  +  1 ) }  ( theta `  k )  <  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
353352ancld 576 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e.  { (
n  +  1 ) }  ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) ) ) ) )
354 ralun 3795 . . . . . . . . 9  |-  ( ( A. k  e.  ( 3 ... n ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e. 
{ ( n  + 
1 ) }  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )  ->  A. k  e.  ( ( 3 ... n )  u.  {
( n  +  1 ) } ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
355 fzsuc 12388 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 3 ... ( n  + 
1 ) )  =  ( ( 3 ... n )  u.  {
( n  +  1 ) } ) )
356355raleqdv 3144 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... ( n  + 
1 ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
( 3 ... n
)  u.  { ( n  +  1 ) } ) ( theta `  k )  <  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
357354, 356syl5ibr 236 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e. 
{ ( n  + 
1 ) }  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )  ->  A. k  e.  ( 3 ... (
n  +  1 ) ) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) ) ) )
358353, 357syld 47 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  A. k  e.  ( 3 ... ( n  +  1 ) ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
35966, 68, 70, 72, 74, 112, 358uzind4i 11750 . . . . . 6  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  A. k  e.  ( 3 ... ( |_ `  N ) ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
360 fveq2 6191 . . . . . . . 8  |-  ( k  =  ( |_ `  N )  ->  ( theta `  k )  =  ( theta `  ( |_ `  N ) ) )
361 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  ( |_ `  N )  ->  (
2  x.  k )  =  ( 2  x.  ( |_ `  N
) ) )
362361oveq1d 6665 . . . . . . . . 9  |-  ( k  =  ( |_ `  N )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( |_ `  N ) )  - 
3 ) )
363362oveq2d 6666 . . . . . . . 8  |-  ( k  =  ( |_ `  N )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
364360, 363breq12d 4666 . . . . . . 7  |-  ( k  =  ( |_ `  N )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( |_ `  N ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) ) ) )
365364rspcv 3305 . . . . . 6  |-  ( ( |_ `  N )  e.  ( 3 ... ( |_ `  N
) )  ->  ( A. k  e.  (
3 ... ( |_ `  N ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( |_ `  N ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) ) )
36665, 359, 365sylc 65 . . . . 5  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( theta `  ( |_ `  N
) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) ) )
36764, 366syl 17 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  ( |_ `  N ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
36860, 367eqbrtrrd 4677 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
36935adantr 481 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  N )  e.  RR )
37031a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  3  e.  RR )
371 flle 12600 . . . . . . 7  |-  ( N  e.  RR  ->  ( |_ `  N )  <_  N )
372371ad2antrr 762 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  <_  N
)
37322adantr 481 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  N  e.  RR )
37425a1i 11 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
375 lemul2 10876 . . . . . . 7  |-  ( ( ( |_ `  N
)  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_
`  N )  <_  N 
<->  ( 2  x.  ( |_ `  N ) )  <_  ( 2  x.  N ) ) )
37650, 373, 374, 375syl3anc 1326 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( |_
`  N )  <_  N 
<->  ( 2  x.  ( |_ `  N ) )  <_  ( 2  x.  N ) ) )
377372, 376mpbid 222 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  ( |_ `  N
) )  <_  (
2  x.  N ) )
37852, 369, 370, 377lesub1dd 10643 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  ( |_ `  N ) )  - 
3 )  <_  (
( 2  x.  N
)  -  3 ) )
3797a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
380 lemul2 10876 . . . . 5  |-  ( ( ( ( 2  x.  ( |_ `  N
) )  -  3 )  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( ( ( 2  x.  ( |_ `  N ) )  - 
3 )  <_  (
( 2  x.  N
)  -  3 )  <-> 
( ( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) )  <_  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) ) )
38154, 57, 379, 380syl3anc 1326 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( ( 2  x.  ( |_
`  N ) )  -  3 )  <_ 
( ( 2  x.  N )  -  3 )  <->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  <_  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) ) )
382378, 381mpbid 222 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  <_  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
38348, 56, 59, 368, 382ltletrd 10197 . 2  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  <  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) )
384117a1i 11 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
2  e.  ZZ )
385 flcl 12596 . . . . 5  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  ZZ )
386385adantr 481 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( |_ `  N
)  e.  ZZ )
387 ltle 10126 . . . . . . 7  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
3882, 387mpan 706 . . . . . 6  |-  ( N  e.  RR  ->  (
2  <  N  ->  2  <_  N ) )
389 flge 12606 . . . . . . 7  |-  ( ( N  e.  RR  /\  2  e.  ZZ )  ->  ( 2  <_  N  <->  2  <_  ( |_ `  N ) ) )
390117, 389mpan2 707 . . . . . 6  |-  ( N  e.  RR  ->  (
2  <_  N  <->  2  <_  ( |_ `  N ) ) )
391388, 390sylibd 229 . . . . 5  |-  ( N  e.  RR  ->  (
2  <  N  ->  2  <_  ( |_ `  N ) ) )
392391imp 445 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
2  <_  ( |_ `  N ) )
393 eluz2 11693 . . . 4  |-  ( ( |_ `  N )  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  ( |_
`  N )  e.  ZZ  /\  2  <_ 
( |_ `  N
) ) )
394384, 386, 392, 393syl3anbrc 1246 . . 3  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( |_ `  N
)  e.  ( ZZ>= ` 
2 ) )
395 uzp1 11721 . . 3  |-  ( ( |_ `  N )  e.  ( ZZ>= `  2
)  ->  ( ( |_ `  N )  =  2  \/  ( |_
`  N )  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
396394, 395syl 17 . 2  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( ( |_ `  N )  =  2  \/  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) ) )
39746, 383, 396mpjaodan 827 1  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  N )  <  ( ( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    u. cun 3572   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   6c6 11074   8c8 11076   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   |_cfl 12591   ^cexp 12860    || cdvds 14983   Primecprime 15385   logclog 24301   thetaccht 24817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cht 24823
This theorem is referenced by:  bposlem6  25014  chto1ub  25165
  Copyright terms: Public domain W3C validator