MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem3 Structured version   Visualization version   Unicode version

Theorem m2detleiblem3 20435
Description: Lemma 3 for m2detleib 20437. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n  |-  N  =  { 1 ,  2 }
m2detleiblem2.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
m2detleiblem2.a  |-  A  =  ( N Mat  R )
m2detleiblem2.b  |-  B  =  ( Base `  A
)
m2detleiblem2.g  |-  G  =  (mulGrp `  R )
m2detleiblem3.m  |-  .x.  =  ( +g  `  G )
Assertion
Ref Expression
m2detleiblem3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 1 M 1 )  .x.  (
2 M 2 ) ) )
Distinct variable groups:    B, n    n, M    n, N    P, n    Q, n    R, n
Allowed substitution hints:    A( n)    .x. ( n)    G( n)

Proof of Theorem m2detleiblem3
StepHypRef Expression
1 m2detleiblem2.g . . . 4  |-  G  =  (mulGrp `  R )
2 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
31, 2mgpbas 18495 . . 3  |-  ( Base `  R )  =  (
Base `  G )
4 m2detleiblem3.m . . 3  |-  .x.  =  ( +g  `  G )
5 fvex 6201 . . . . 5  |-  (mulGrp `  R )  e.  _V
61, 5eqeltri 2697 . . . 4  |-  G  e. 
_V
76a1i 11 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  G  e.  _V )
8 1ex 10035 . . . . . . 7  |-  1  e.  _V
9 2nn 11185 . . . . . . 7  |-  2  e.  NN
10 prex 4909 . . . . . . . . 9  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  _V
1110prid1 4297 . . . . . . . 8  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }
12 eqid 2622 . . . . . . . . 9  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
13 m2detleiblem2.p . . . . . . . . 9  |-  P  =  ( Base `  ( SymGrp `
 N ) )
14 m2detleiblem2.n . . . . . . . . 9  |-  N  =  { 1 ,  2 }
1512, 13, 14symg2bas 17818 . . . . . . . 8  |-  ( ( 1  e.  _V  /\  2  e.  NN )  ->  P  =  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } } )
1611, 15syl5eleqr 2708 . . . . . . 7  |-  ( ( 1  e.  _V  /\  2  e.  NN )  ->  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  e.  P
)
178, 9, 16mp2an 708 . . . . . 6  |-  { <. 1 ,  1 >. , 
<. 2 ,  2
>. }  e.  P
18 eleq1 2689 . . . . . 6  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( Q  e.  P  <->  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  e.  P
) )
1917, 18mpbiri 248 . . . . 5  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  Q  e.  P
)
20 m2detleiblem2.a . . . . . . 7  |-  A  =  ( N Mat  R )
2114oveq1i 6660 . . . . . . 7  |-  ( N Mat 
R )  =  ( { 1 ,  2 } Mat  R )
2220, 21eqtri 2644 . . . . . 6  |-  A  =  ( { 1 ,  2 } Mat  R )
23 m2detleiblem2.b . . . . . 6  |-  B  =  ( Base `  A
)
2414fveq2i 6194 . . . . . . . 8  |-  ( SymGrp `  N )  =  (
SymGrp `  { 1 ,  2 } )
2524fveq2i 6194 . . . . . . 7  |-  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  { 1 ,  2 } ) )
2613, 25eqtri 2644 . . . . . 6  |-  P  =  ( Base `  ( SymGrp `
 { 1 ,  2 } ) )
2722, 23, 26matepmcl 20268 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  e.  P  /\  M  e.  B )  ->  A. n  e.  { 1 ,  2 }  ( ( Q `
 n ) M n )  e.  (
Base `  R )
)
2819, 27syl3an2 1360 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  A. n  e.  { 1 ,  2 }  ( ( Q `
 n ) M n )  e.  (
Base `  R )
)
29 mpteq1 4737 . . . . . 6  |-  ( N  =  { 1 ,  2 }  ->  (
n  e.  N  |->  ( ( Q `  n
) M n ) )  =  ( n  e.  { 1 ,  2 }  |->  ( ( Q `  n ) M n ) ) )
3014, 29ax-mp 5 . . . . 5  |-  ( n  e.  N  |->  ( ( Q `  n ) M n ) )  =  ( n  e. 
{ 1 ,  2 }  |->  ( ( Q `
 n ) M n ) )
3130fmpt 6381 . . . 4  |-  ( A. n  e.  { 1 ,  2 }  (
( Q `  n
) M n )  e.  ( Base `  R
)  <->  ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) : { 1 ,  2 } --> ( Base `  R
) )
3228, 31sylib 208 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
n  e.  N  |->  ( ( Q `  n
) M n ) ) : { 1 ,  2 } --> ( Base `  R ) )
333, 4, 7, 32gsumpr12val 17282 . 2  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( ( n  e.  N  |->  ( ( Q `  n ) M n ) ) `
 1 )  .x.  ( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
2 ) ) )
348prid1 4297 . . . . . 6  |-  1  e.  { 1 ,  2 }
3534, 14eleqtrri 2700 . . . . 5  |-  1  e.  N
3620, 23, 13matepmcl 20268 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Q  e.  P  /\  M  e.  B )  ->  A. n  e.  N  ( ( Q `  n ) M n )  e.  ( Base `  R
) )
3719, 36syl3an2 1360 . . . . . 6  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  A. n  e.  N  ( ( Q `  n ) M n )  e.  ( Base `  R
) )
38 fveq2 6191 . . . . . . . . 9  |-  ( n  =  1  ->  ( Q `  n )  =  ( Q ` 
1 ) )
39 id 22 . . . . . . . . 9  |-  ( n  =  1  ->  n  =  1 )
4038, 39oveq12d 6668 . . . . . . . 8  |-  ( n  =  1  ->  (
( Q `  n
) M n )  =  ( ( Q `
 1 ) M 1 ) )
4140eleq1d 2686 . . . . . . 7  |-  ( n  =  1  ->  (
( ( Q `  n ) M n )  e.  ( Base `  R )  <->  ( ( Q `  1 ) M 1 )  e.  ( Base `  R
) ) )
4241rspcva 3307 . . . . . 6  |-  ( ( 1  e.  N  /\  A. n  e.  N  ( ( Q `  n
) M n )  e.  ( Base `  R
) )  ->  (
( Q `  1
) M 1 )  e.  ( Base `  R
) )
4335, 37, 42sylancr 695 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( Q `  1
) M 1 )  e.  ( Base `  R
) )
44 eqid 2622 . . . . . 6  |-  ( n  e.  N  |->  ( ( Q `  n ) M n ) )  =  ( n  e.  N  |->  ( ( Q `
 n ) M n ) )
4540, 44fvmptg 6280 . . . . 5  |-  ( ( 1  e.  N  /\  ( ( Q ` 
1 ) M 1 )  e.  ( Base `  R ) )  -> 
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
1 )  =  ( ( Q `  1
) M 1 ) )
4635, 43, 45sylancr 695 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  1
)  =  ( ( Q `  1 ) M 1 ) )
47 fveq1 6190 . . . . . . 7  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( Q ` 
1 )  =  ( { <. 1 ,  1
>. ,  <. 2 ,  2 >. } `  1
) )
48 1ne2 11240 . . . . . . . 8  |-  1  =/=  2
498, 8fvpr1 6456 . . . . . . . 8  |-  ( 1  =/=  2  ->  ( { <. 1 ,  1
>. ,  <. 2 ,  2 >. } `  1
)  =  1 )
5048, 49ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  2 >. } `  1
)  =  1
5147, 50syl6eq 2672 . . . . . 6  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( Q ` 
1 )  =  1 )
52513ad2ant2 1083 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( Q `  1 )  =  1 )
5352oveq1d 6665 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( Q `  1
) M 1 )  =  ( 1 M 1 ) )
5446, 53eqtrd 2656 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  1
)  =  ( 1 M 1 ) )
55 2ex 11092 . . . . . . 7  |-  2  e.  _V
5655prid2 4298 . . . . . 6  |-  2  e.  { 1 ,  2 }
5756, 14eleqtrri 2700 . . . . 5  |-  2  e.  N
58 fveq2 6191 . . . . . . . . 9  |-  ( n  =  2  ->  ( Q `  n )  =  ( Q ` 
2 ) )
59 id 22 . . . . . . . . 9  |-  ( n  =  2  ->  n  =  2 )
6058, 59oveq12d 6668 . . . . . . . 8  |-  ( n  =  2  ->  (
( Q `  n
) M n )  =  ( ( Q `
 2 ) M 2 ) )
6160eleq1d 2686 . . . . . . 7  |-  ( n  =  2  ->  (
( ( Q `  n ) M n )  e.  ( Base `  R )  <->  ( ( Q `  2 ) M 2 )  e.  ( Base `  R
) ) )
6261rspcva 3307 . . . . . 6  |-  ( ( 2  e.  N  /\  A. n  e.  N  ( ( Q `  n
) M n )  e.  ( Base `  R
) )  ->  (
( Q `  2
) M 2 )  e.  ( Base `  R
) )
6357, 37, 62sylancr 695 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( Q `  2
) M 2 )  e.  ( Base `  R
) )
6460, 44fvmptg 6280 . . . . 5  |-  ( ( 2  e.  N  /\  ( ( Q ` 
2 ) M 2 )  e.  ( Base `  R ) )  -> 
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
2 )  =  ( ( Q `  2
) M 2 ) )
6557, 63, 64sylancr 695 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
)  =  ( ( Q `  2 ) M 2 ) )
66 fveq1 6190 . . . . . . 7  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( Q ` 
2 )  =  ( { <. 1 ,  1
>. ,  <. 2 ,  2 >. } `  2
) )
6755, 55fvpr2 6457 . . . . . . . 8  |-  ( 1  =/=  2  ->  ( { <. 1 ,  1
>. ,  <. 2 ,  2 >. } `  2
)  =  2 )
6848, 67ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  2 >. } `  2
)  =  2
6966, 68syl6eq 2672 . . . . . 6  |-  ( Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  ->  ( Q ` 
2 )  =  2 )
70693ad2ant2 1083 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( Q `  2 )  =  2 )
7170oveq1d 6665 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( Q `  2
) M 2 )  =  ( 2 M 2 ) )
7265, 71eqtrd 2656 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
)  =  ( 2 M 2 ) )
7354, 72oveq12d 6668 . 2  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  (
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
1 )  .x.  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
) )  =  ( ( 1 M 1 )  .x.  ( 2 M 2 ) ) )
7433, 73eqtrd 2656 1  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1
>. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 1 M 1 )  .x.  (
2 M 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   {cpr 4179   <.cop 4183    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937   NNcn 11020   2c2 11070   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101   SymGrpcsymg 17797  mulGrpcmgp 18489   Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-symg 17798  df-mgp 18490  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  m2detleib  20437
  Copyright terms: Public domain W3C validator