| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6lem1N | Structured version Visualization version Unicode version | ||
| Description: Lemma for mapdh6N 37036. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh.q |
|
| mapdh.i |
|
| mapdh.h |
|
| mapdh.m |
|
| mapdh.u |
|
| mapdh.v |
|
| mapdh.s |
|
| mapdhc.o |
|
| mapdh.n |
|
| mapdh.c |
|
| mapdh.d |
|
| mapdh.r |
|
| mapdh.j |
|
| mapdh.k |
|
| mapdhc.f |
|
| mapdh.mn |
|
| mapdhcl.x |
|
| mapdh.p |
|
| mapdh.a |
|
| mapdhe6.y |
|
| mapdhe6.z |
|
| mapdhe6.xn |
|
| mapdh6.yz |
|
| mapdh6.fg |
|
| mapdh6.fe |
|
| Ref | Expression |
|---|---|
| mapdh6lem1N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.h |
. . . 4
| |
| 2 | mapdh.m |
. . . 4
| |
| 3 | mapdh.u |
. . . 4
| |
| 4 | eqid 2622 |
. . . 4
| |
| 5 | mapdh.k |
. . . 4
| |
| 6 | 1, 3, 5 | dvhlmod 36399 |
. . . . 5
|
| 7 | mapdhcl.x |
. . . . . . . 8
| |
| 8 | 7 | eldifad 3586 |
. . . . . . 7
|
| 9 | mapdhe6.y |
. . . . . . . 8
| |
| 10 | 9 | eldifad 3586 |
. . . . . . 7
|
| 11 | mapdh.v |
. . . . . . . 8
| |
| 12 | mapdh.s |
. . . . . . . 8
| |
| 13 | 11, 12 | lmodvsubcl 18908 |
. . . . . . 7
|
| 14 | 6, 8, 10, 13 | syl3anc 1326 |
. . . . . 6
|
| 15 | mapdh.n |
. . . . . . 7
| |
| 16 | 11, 4, 15 | lspsncl 18977 |
. . . . . 6
|
| 17 | 6, 14, 16 | syl2anc 693 |
. . . . 5
|
| 18 | mapdhe6.z |
. . . . . . 7
| |
| 19 | 18 | eldifad 3586 |
. . . . . 6
|
| 20 | 11, 4, 15 | lspsncl 18977 |
. . . . . 6
|
| 21 | 6, 19, 20 | syl2anc 693 |
. . . . 5
|
| 22 | eqid 2622 |
. . . . . 6
| |
| 23 | 4, 22 | lsmcl 19083 |
. . . . 5
|
| 24 | 6, 17, 21, 23 | syl3anc 1326 |
. . . 4
|
| 25 | 11, 12 | lmodvsubcl 18908 |
. . . . . . 7
|
| 26 | 6, 8, 19, 25 | syl3anc 1326 |
. . . . . 6
|
| 27 | 11, 4, 15 | lspsncl 18977 |
. . . . . 6
|
| 28 | 6, 26, 27 | syl2anc 693 |
. . . . 5
|
| 29 | 11, 4, 15 | lspsncl 18977 |
. . . . . 6
|
| 30 | 6, 10, 29 | syl2anc 693 |
. . . . 5
|
| 31 | 4, 22 | lsmcl 19083 |
. . . . 5
|
| 32 | 6, 28, 30, 31 | syl3anc 1326 |
. . . 4
|
| 33 | 1, 2, 3, 4, 5, 24, 32 | mapdin 36951 |
. . 3
|
| 34 | mapdh.c |
. . . . . 6
| |
| 35 | eqid 2622 |
. . . . . 6
| |
| 36 | 1, 2, 3, 4, 22, 34, 35, 5, 17, 21 | mapdlsm 36953 |
. . . . 5
|
| 37 | 1, 2, 3, 4, 22, 34, 35, 5, 28, 30 | mapdlsm 36953 |
. . . . 5
|
| 38 | 36, 37 | ineq12d 3815 |
. . . 4
|
| 39 | mapdh6.fg |
. . . . . . . 8
| |
| 40 | mapdh.q |
. . . . . . . . 9
| |
| 41 | mapdh.i |
. . . . . . . . 9
| |
| 42 | mapdhc.o |
. . . . . . . . 9
| |
| 43 | mapdh.d |
. . . . . . . . 9
| |
| 44 | mapdh.r |
. . . . . . . . 9
| |
| 45 | mapdh.j |
. . . . . . . . 9
| |
| 46 | mapdhc.f |
. . . . . . . . 9
| |
| 47 | mapdh.mn |
. . . . . . . . 9
| |
| 48 | 1, 3, 5 | dvhlvec 36398 |
. . . . . . . . . . . . 13
|
| 49 | mapdh6.yz |
. . . . . . . . . . . . 13
| |
| 50 | mapdhe6.xn |
. . . . . . . . . . . . 13
| |
| 51 | 11, 42, 15, 48, 10, 18, 8, 49, 50 | lspindp2 19135 |
. . . . . . . . . . . 12
|
| 52 | 51 | simpld 475 |
. . . . . . . . . . 11
|
| 53 | 40, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 10, 52 | mapdhcl 37016 |
. . . . . . . . . 10
|
| 54 | 39, 53 | eqeltrrd 2702 |
. . . . . . . . 9
|
| 55 | 40, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 9, 54, 52 | mapdheq 37017 |
. . . . . . . 8
|
| 56 | 39, 55 | mpbid 222 |
. . . . . . 7
|
| 57 | 56 | simprd 479 |
. . . . . 6
|
| 58 | mapdh6.fe |
. . . . . . . 8
| |
| 59 | 11, 42, 15, 48, 9, 19, 8, 49, 50 | lspindp1 19133 |
. . . . . . . . . . . 12
|
| 60 | 59 | simpld 475 |
. . . . . . . . . . 11
|
| 61 | 40, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 19, 60 | mapdhcl 37016 |
. . . . . . . . . 10
|
| 62 | 58, 61 | eqeltrrd 2702 |
. . . . . . . . 9
|
| 63 | 40, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 18, 62, 60 | mapdheq 37017 |
. . . . . . . 8
|
| 64 | 58, 63 | mpbid 222 |
. . . . . . 7
|
| 65 | 64 | simpld 475 |
. . . . . 6
|
| 66 | 57, 65 | oveq12d 6668 |
. . . . 5
|
| 67 | 64 | simprd 479 |
. . . . . 6
|
| 68 | 56 | simpld 475 |
. . . . . 6
|
| 69 | 67, 68 | oveq12d 6668 |
. . . . 5
|
| 70 | 66, 69 | ineq12d 3815 |
. . . 4
|
| 71 | 38, 70 | eqtrd 2656 |
. . 3
|
| 72 | 33, 71 | eqtrd 2656 |
. 2
|
| 73 | mapdh.p |
. . . 4
| |
| 74 | 11, 12, 42, 22, 15, 48, 8, 50, 49, 9, 18, 73 | baerlem5a 37003 |
. . 3
|
| 75 | 74 | fveq2d 6195 |
. 2
|
| 76 | 1, 34, 5 | lcdlvec 36880 |
. . 3
|
| 77 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 46, 47, 8, 10, 54, 68, 19, 62, 65, 50 | mapdindp 36960 |
. . 3
|
| 78 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 10, 19, 62, 65, 49 | mapdncol 36959 |
. . 3
|
| 79 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 42, 40, 9 | mapdn0 36958 |
. . 3
|
| 80 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 62, 65, 42, 40, 18 | mapdn0 36958 |
. . 3
|
| 81 | mapdh.a |
. . 3
| |
| 82 | 43, 44, 40, 35, 45, 76, 46, 77, 78, 79, 80, 81 | baerlem5a 37003 |
. 2
|
| 83 | 72, 75, 82 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-ot 4186 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lcv 34306 df-lfl 34345 df-lkr 34373 df-ldual 34411 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 df-lcdual 36876 df-mapd 36914 |
| This theorem is referenced by: mapdh6lem2N 37023 mapdh6aN 37024 |
| Copyright terms: Public domain | W3C validator |