Proof of Theorem mdetunilem6
Step | Hyp | Ref
| Expression |
1 | | mdetuni.a |
. . . . 5
 Mat   |
2 | | mdetuni.b |
. . . . 5
     |
3 | | mdetuni.k |
. . . . 5
     |
4 | | mdetuni.0g |
. . . . 5
     |
5 | | mdetuni.1r |
. . . . 5
     |
6 | | mdetuni.pg |
. . . . 5
    |
7 | | mdetuni.tg |
. . . . 5
     |
8 | | mdetuni.n |
. . . . 5
   |
9 | | mdetuni.r |
. . . . 5
   |
10 | | mdetuni.ff |
. . . . 5
       |
11 | | mdetuni.al |
. . . . 5
  

  
               |
12 | | mdetuni.li |
. . . . 5
  


                                                       
        
        |
13 | | mdetuni.sc |
. . . . 5
  


                                         
             |
14 | | mdetunilem6.ph |
. . . . 5
   |
15 | | mdetunilem6.ef |
. . . . . 6
 
   |
16 | 15 | simp1d 1073 |
. . . . 5

  |
17 | | mdetunilem6.gh |
. . . . . . . 8
   
   |
18 | 17 | simprd 479 |
. . . . . . 7
     |
19 | 18 | 3adant2 1080 |
. . . . . 6
     |
20 | 17 | simpld 475 |
. . . . . . 7
     |
21 | 20 | 3adant2 1080 |
. . . . . 6
     |
22 | | ringgrp 18552 |
. . . . . . . . . . 11

  |
23 | 14, 9, 22 | 3syl 18 |
. . . . . . . . . 10

  |
24 | 23 | adantr 481 |
. . . . . . . . 9
     |
25 | 3, 6 | grpcl 17430 |
. . . . . . . . 9
 
     |
26 | 24, 18, 20, 25 | syl3anc 1326 |
. . . . . . . 8
       |
27 | 26 | 3adant2 1080 |
. . . . . . 7
       |
28 | | mdetunilem6.i |
. . . . . . 7
     |
29 | 27, 28 | ifcld 4131 |
. . . . . 6
            |
30 | 19, 21, 29 | 3jca 1242 |
. . . . 5
   
          |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 16, 30 | mdetunilem5 20422 |
. . . 4
                                                                |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 26, 28 | mdetunilem2 20419 |
. . . 4
                       |
33 | 15 | simp2d 1074 |
. . . . . . . 8

  |
34 | 19, 28 | ifcld 4131 |
. . . . . . . . 9
          |
35 | 19, 21, 34 | 3jca 1242 |
. . . . . . . 8
   
        |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 33, 35 | mdetunilem5 20422 |
. . . . . . 7
                                                          |
37 | 15 | simp3d 1075 |
. . . . . . . . . . 11

  |
38 | 37 | necomd 2849 |
. . . . . . . . . 10

  |
39 | 33, 16, 38 | 3jca 1242 |
. . . . . . . . 9
 
   |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 39, 18, 28 | mdetunilem2 20419 |
. . . . . . . 8
                   |
41 | 40 | oveq1d 6665 |
. . . . . . 7
      
                
                                 |
42 | 37 | neneqd 2799 |
. . . . . . . . . . . . . 14
   |
43 | | eqtr2 2642 |
. . . . . . . . . . . . . 14
 
   |
44 | 42, 43 | nsyl 135 |
. . . . . . . . . . . . 13
     |
45 | 44 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
       |
46 | | ifcomnan 4137 |
. . . . . . . . . . . 12
  
   
   
     
   
    |
47 | 45, 46 | syl 17 |
. . . . . . . . . . 11
                         |
48 | 47 | mpt2eq3dva 6719 |
. . . . . . . . . 10
  
            
             |
49 | 48 | fveq2d 6195 |
. . . . . . . . 9
                      
              |
50 | 14, 10 | syl 17 |
. . . . . . . . . 10
       |
51 | 14, 8 | syl 17 |
. . . . . . . . . . 11

  |
52 | 21, 28 | ifcld 4131 |
. . . . . . . . . . . 12
          |
53 | 19, 52 | ifcld 4131 |
. . . . . . . . . . 11
               |
54 | 1, 3, 2, 51, 23, 53 | matbas2d 20229 |
. . . . . . . . . 10
  
             |
55 | 50, 54 | ffvelrnd 6360 |
. . . . . . . . 9
                    |
56 | 49, 55 | eqeltrrd 2702 |
. . . . . . . 8
                    |
57 | 3, 6, 4 | grplid 17452 |
. . . . . . . 8
          
   
         
                                |
58 | 23, 56, 57 | syl2anc 693 |
. . . . . . 7

                          
   
      |
59 | 36, 41, 58 | 3eqtrd 2660 |
. . . . . 6
                        
              |
60 | | ifcomnan 4137 |
. . . . . . . . 9
  
   
                 
    |
61 | 45, 60 | syl 17 |
. . . . . . . 8
                             |
62 | 61 | mpt2eq3dva 6719 |
. . . . . . 7
  
              
               |
63 | 62 | fveq2d 6195 |
. . . . . 6
                        
                |
64 | 59, 63, 49 | 3eqtr4d 2666 |
. . . . 5
                        
              |
65 | 21, 28 | ifcld 4131 |
. . . . . . . . 9
          |
66 | 19, 21, 65 | 3jca 1242 |
. . . . . . . 8
   
        |
67 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 33, 66 | mdetunilem5 20422 |
. . . . . . 7
                                                          |
68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 39, 20, 28 | mdetunilem2 20419 |
. . . . . . . 8
                   |
69 | 68 | oveq2d 6666 |
. . . . . . 7
      
                
                      
   
      |
70 | | ifcomnan 4137 |
. . . . . . . . . . . 12
  
   
   
     
   
    |
71 | 45, 70 | syl 17 |
. . . . . . . . . . 11
                         |
72 | 71 | mpt2eq3dva 6719 |
. . . . . . . . . 10
  
            
             |
73 | 72 | fveq2d 6195 |
. . . . . . . . 9
                      
              |
74 | 19, 28 | ifcld 4131 |
. . . . . . . . . . . 12
          |
75 | 21, 74 | ifcld 4131 |
. . . . . . . . . . 11
               |
76 | 1, 3, 2, 51, 23, 75 | matbas2d 20229 |
. . . . . . . . . 10
  
             |
77 | 50, 76 | ffvelrnd 6360 |
. . . . . . . . 9
                    |
78 | 73, 77 | eqeltrrd 2702 |
. . . . . . . 8
                    |
79 | 3, 6, 4 | grprid 17453 |
. . . . . . . 8
          
   
                      
        
   
      |
80 | 23, 78, 79 | syl2anc 693 |
. . . . . . 7
      
           
        
   
      |
81 | 67, 69, 80 | 3eqtrd 2660 |
. . . . . 6
                        
              |
82 | | ifcomnan 4137 |
. . . . . . . . 9
  
   
                 
    |
83 | 45, 82 | syl 17 |
. . . . . . . 8
                             |
84 | 83 | mpt2eq3dva 6719 |
. . . . . . 7
  
              
               |
85 | 84 | fveq2d 6195 |
. . . . . 6
                        
                |
86 | 81, 85, 73 | 3eqtr4d 2666 |
. . . . 5
                        
              |
87 | 64, 86 | oveq12d 6668 |
. . . 4
      
                  
                        
   
            
   
       |
88 | 31, 32, 87 | 3eqtr3rd 2665 |
. . 3
      
                
              |
89 | | eqid 2622 |
. . . . 5
           |
90 | 3, 6, 4, 89 | grpinvid1 17470 |
. . . 4
          
   
                                   
                                                                    |
91 | 23, 55, 77, 90 | syl3anc 1326 |
. . 3
              
                                                                    |
92 | 88, 91 | mpbird 247 |
. 2
                                   
   
      |
93 | 92 | eqcomd 2628 |
1
                              
               |