| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvecolem4b | Structured version Visualization version Unicode version | ||
| Description: Lemma for minveco 27740. The convergent point of the cauchy
sequence
|
| Ref | Expression |
|---|---|
| minveco.x |
|
| minveco.m |
|
| minveco.n |
|
| minveco.y |
|
| minveco.u |
|
| minveco.w |
|
| minveco.a |
|
| minveco.d |
|
| minveco.j |
|
| minveco.r |
|
| minveco.s |
|
| minveco.f |
|
| minveco.1 |
|
| Ref | Expression |
|---|---|
| minvecolem4b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.u |
. . . 4
| |
| 2 | phnv 27669 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | minveco.w |
. . . . 5
| |
| 5 | elin 3796 |
. . . . 5
| |
| 6 | 4, 5 | sylib 208 |
. . . 4
|
| 7 | 6 | simpld 475 |
. . 3
|
| 8 | minveco.x |
. . . 4
| |
| 9 | minveco.y |
. . . 4
| |
| 10 | eqid 2622 |
. . . 4
| |
| 11 | 8, 9, 10 | sspba 27582 |
. . 3
|
| 12 | 3, 7, 11 | syl2anc 693 |
. 2
|
| 13 | minveco.d |
. . . . . . . 8
| |
| 14 | 8, 13 | imsxmet 27547 |
. . . . . . 7
|
| 15 | 3, 14 | syl 17 |
. . . . . 6
|
| 16 | minveco.j |
. . . . . . 7
| |
| 17 | 16 | methaus 22325 |
. . . . . 6
|
| 18 | 15, 17 | syl 17 |
. . . . 5
|
| 19 | lmfun 21185 |
. . . . 5
| |
| 20 | 18, 19 | syl 17 |
. . . 4
|
| 21 | minveco.m |
. . . . . 6
| |
| 22 | minveco.n |
. . . . . 6
| |
| 23 | minveco.a |
. . . . . 6
| |
| 24 | minveco.r |
. . . . . 6
| |
| 25 | minveco.s |
. . . . . 6
| |
| 26 | minveco.f |
. . . . . 6
| |
| 27 | minveco.1 |
. . . . . 6
| |
| 28 | 8, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27 | minvecolem4a 27733 |
. . . . 5
|
| 29 | eqid 2622 |
. . . . . . 7
| |
| 30 | nnuz 11723 |
. . . . . . 7
| |
| 31 | fvex 6201 |
. . . . . . . . 9
| |
| 32 | 9, 31 | eqeltri 2697 |
. . . . . . . 8
|
| 33 | 32 | a1i 11 |
. . . . . . 7
|
| 34 | 16 | mopntop 22245 |
. . . . . . . 8
|
| 35 | 15, 34 | syl 17 |
. . . . . . 7
|
| 36 | xmetres2 22166 |
. . . . . . . . . 10
| |
| 37 | 15, 12, 36 | syl2anc 693 |
. . . . . . . . 9
|
| 38 | eqid 2622 |
. . . . . . . . . 10
| |
| 39 | 38 | mopntopon 22244 |
. . . . . . . . 9
|
| 40 | 37, 39 | syl 17 |
. . . . . . . 8
|
| 41 | lmcl 21101 |
. . . . . . . 8
| |
| 42 | 40, 28, 41 | syl2anc 693 |
. . . . . . 7
|
| 43 | 1zzd 11408 |
. . . . . . 7
| |
| 44 | 29, 30, 33, 35, 42, 43, 26 | lmss 21102 |
. . . . . 6
|
| 45 | eqid 2622 |
. . . . . . . . . 10
| |
| 46 | 45, 16, 38 | metrest 22329 |
. . . . . . . . 9
|
| 47 | 15, 12, 46 | syl2anc 693 |
. . . . . . . 8
|
| 48 | 47 | fveq2d 6195 |
. . . . . . 7
|
| 49 | 48 | breqd 4664 |
. . . . . 6
|
| 50 | 44, 49 | bitrd 268 |
. . . . 5
|
| 51 | 28, 50 | mpbird 247 |
. . . 4
|
| 52 | funbrfv 6234 |
. . . 4
| |
| 53 | 20, 51, 52 | sylc 65 |
. . 3
|
| 54 | 53, 42 | eqeltrd 2701 |
. 2
|
| 55 | 12, 54 | sseldd 3604 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-icc 12182 df-fl 12593 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-bases 20750 df-ntr 20824 df-nei 20902 df-lm 21033 df-haus 21119 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-cfil 23053 df-cau 23054 df-cmet 23055 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ims 27456 df-ssp 27577 df-ph 27668 df-cbn 27719 |
| This theorem is referenced by: minvecolem4 27736 |
| Copyright terms: Public domain | W3C validator |