MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   Unicode version

Theorem minvecolem6 27738
Description: Lemma for minveco 27740. Any minimal point is less than  S away from  A. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  = inf ( R ,  RR ,  <  )
Assertion
Ref Expression
minvecolem6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem6
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
2 phnv 27669 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
31, 2syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  U  e.  NrmCVec )
5 minveco.a . . . . . . 7  |-  ( ph  ->  A  e.  X )
65adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  A  e.  X )
7 inss1 3833 . . . . . . . . 9  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
8 minveco.w . . . . . . . . 9  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
97, 8sseldi 3601 . . . . . . . 8  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
10 minveco.x . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
11 minveco.y . . . . . . . . 9  |-  Y  =  ( BaseSet `  W )
12 eqid 2622 . . . . . . . . 9  |-  ( SubSp `  U )  =  (
SubSp `  U )
1310, 11, 12sspba 27582 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
143, 9, 13syl2anc 693 . . . . . . 7  |-  ( ph  ->  Y  C_  X )
1514sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  X )
16 minveco.m . . . . . . 7  |-  M  =  ( -v `  U
)
17 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
18 minveco.d . . . . . . 7  |-  D  =  ( IndMet `  U )
1910, 16, 17, 18imsdval 27541 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
204, 6, 15, 19syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A D x )  =  ( N `  ( A M x ) ) )
2120oveq1d 6665 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( A D x ) ^ 2 )  =  ( ( N `
 ( A M x ) ) ^
2 ) )
22 minveco.s . . . . . . . 8  |-  S  = inf ( R ,  RR ,  <  )
23 minveco.j . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  D )
24 minveco.r . . . . . . . . . . . 12  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 27730 . . . . . . . . . . 11  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2625adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
2726simp1d 1073 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  C_  RR )
2826simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  R  =/=  (/) )
29 0red 10041 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  0  e.  RR )
3026simp3d 1075 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Y )  ->  A. w  e.  R  0  <_  w )
31 breq1 4656 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
3231ralbidv 2986 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
3332rspcev 3309 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
3429, 30, 33syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
35 infrecl 11005 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  -> inf ( R ,  RR ,  <  )  e.  RR )
3627, 28, 34, 35syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Y )  -> inf ( R ,  RR ,  <  )  e.  RR )
3722, 36syl5eqel 2705 . . . . . . 7  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  RR )
3837resqcld 13035 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  RR )
3938recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( S ^ 2 )  e.  CC )
4039addid1d 10236 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( S ^ 2 )  +  0 )  =  ( S ^
2 ) )
4121, 40breq12d 4666 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
4210, 16nvmcl 27501 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  x  e.  X )  ->  ( A M x )  e.  X )
434, 6, 15, 42syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( A M x )  e.  X )
4410, 17nvcl 27516 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  ( N `  ( A M x ) )  e.  RR )
454, 43, 44syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  ( N `  ( A M x ) )  e.  RR )
4610, 17nvge0 27528 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A M x )  e.  X )  ->  0  <_  ( N `  ( A M x ) ) )
474, 43, 46syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  ( N `  ( A M x ) ) )
48 infregelb 11007 . . . . . . 7  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
4927, 28, 34, 29, 48syl31anc 1329 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
5030, 49mpbird 247 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_ inf ( R ,  RR ,  <  ) )
5150, 22syl6breqr 4695 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  0  <_  S )
5245, 37, 47, 51le2sqd 13044 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  ( ( N `  ( A M x ) ) ^ 2 )  <_ 
( S ^ 2 ) ) )
5322breq2i 4661 . . . 4  |-  ( ( N `  ( A M x ) )  <_  S  <->  ( N `  ( A M x ) )  <_ inf ( R ,  RR ,  <  ) )
54 infregelb 11007 . . . . 5  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  ( N `
 ( A M x ) )  e.  RR )  ->  (
( N `  ( A M x ) )  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5527, 28, 34, 45, 54syl31anc 1329 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5653, 55syl5bb 272 . . 3  |-  ( (
ph  /\  x  e.  Y )  ->  (
( N `  ( A M x ) )  <_  S  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5741, 52, 563bitr2d 296 . 2  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. w  e.  R  ( N `  ( A M x ) )  <_  w
) )
5824raleqi 3142 . . 3  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `
 ( A M x ) )  <_  w )
59 fvex 6201 . . . . 5  |-  ( N `
 ( A M y ) )  e. 
_V
6059rgenw 2924 . . . 4  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
61 eqid 2622 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
62 breq2 4657 . . . . 5  |-  ( w  =  ( N `  ( A M y ) )  ->  ( ( N `  ( A M x ) )  <_  w  <->  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6361, 62ralrnmpt 6368 . . . 4  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
6460, 63ax-mp 5 . . 3  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6558, 64bitri 264 . 2  |-  ( A. w  e.  R  ( N `  ( A M x ) )  <_  w  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
6657, 65syl6bb 276 1  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   ^cexp 12860   MetOpencmopn 19736   NrmCVeccnv 27439   BaseSetcba 27441   -vcnsb 27444   normCVcnmcv 27445   IndMetcims 27446   SubSpcss 27576   CPreHil OLDccphlo 27667   CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-ph 27668  df-cbn 27719
This theorem is referenced by:  minvecolem7  27739
  Copyright terms: Public domain W3C validator