MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   Unicode version

Theorem minvecolem5 27737
Description: Lemma for minveco 27740. Discharge the assumption about the sequence  F by applying countable choice ax-cc 9257. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  = inf ( R ,  RR ,  <  )
Assertion
Ref Expression
minvecolem5  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem5
Dummy variables  n  k  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 11058 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  ( 1  /  n
) )
21adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  < 
( 1  /  n
) )
3 nnrecre 11057 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  /  n )  e.  RR )
43adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1  /  n )  e.  RR )
5 minveco.s . . . . . . . . . . . . . 14  |-  S  = inf ( R ,  RR ,  <  )
6 minveco.x . . . . . . . . . . . . . . . . . 18  |-  X  =  ( BaseSet `  U )
7 minveco.m . . . . . . . . . . . . . . . . . 18  |-  M  =  ( -v `  U
)
8 minveco.n . . . . . . . . . . . . . . . . . 18  |-  N  =  ( normCV `  U )
9 minveco.y . . . . . . . . . . . . . . . . . 18  |-  Y  =  ( BaseSet `  W )
10 minveco.u . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  U  e.  CPreHil OLD )
11 minveco.w . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
12 minveco.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  X )
13 minveco.d . . . . . . . . . . . . . . . . . 18  |-  D  =  ( IndMet `  U )
14 minveco.j . . . . . . . . . . . . . . . . . 18  |-  J  =  ( MetOpen `  D )
15 minveco.r . . . . . . . . . . . . . . . . . 18  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 27730 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
1716adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( R 
C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w
) )
1817simp1d 1073 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  R  C_  RR )
1917simp2d 1074 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  R  =/=  (/) )
20 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
2117simp3d 1075 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  A. w  e.  R  0  <_  w )
22 breq1 4656 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
2322ralbidv 2986 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
2423rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
2520, 21, 24sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
26 infrecl 11005 . . . . . . . . . . . . . . 15  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  -> inf ( R ,  RR ,  <  )  e.  RR )
2718, 19, 25, 26syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  -> inf ( R ,  RR ,  <  )  e.  RR )
285, 27syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  S  e.  RR )
2928resqcld 13035 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  e.  RR )
304, 29ltaddposd 10611 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <  ( 1  /  n )  <->  ( S ^ 2 )  < 
( ( S ^
2 )  +  ( 1  /  n ) ) ) )
312, 30mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  < 
( ( S ^
2 )  +  ( 1  /  n ) ) )
3229, 4readdcld 10069 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S ^ 2 )  +  ( 1  /  n ) )  e.  RR )
3328sqge0d 13036 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( S ^ 2 ) )
3429, 4, 33, 2addgegt0d 10601 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  0  < 
( ( S ^
2 )  +  ( 1  /  n ) ) )
3532, 34elrpd 11869 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S ^ 2 )  +  ( 1  /  n ) )  e.  RR+ )
3635rpge0d 11876 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
37 resqrtth 13996 . . . . . . . . . . 11  |-  ( ( ( ( S ^
2 )  +  ( 1  /  n ) )  e.  RR  /\  0  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  -> 
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
3832, 36, 37syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^
2 )  +  ( 1  /  n ) ) )
3931, 38breqtrrd 4681 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( S ^ 2 )  < 
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 ) )
4035rpsqrtcld 14150 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR+ )
4140rpred 11872 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR )
42 0red 10041 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  0  e.  RR )
43 infregelb 11007 . . . . . . . . . . . . 13  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
4418, 19, 25, 42, 43syl31anc 1329 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
4521, 44mpbird 247 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ inf ( R ,  RR ,  <  ) )
4645, 5syl6breqr 4695 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_  S )
4732, 36sqrtge0d 14159 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
4828, 41, 46, 47lt2sqd 13043 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <->  ( S ^
2 )  <  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 ) ) )
4939, 48mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  S  < 
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
5028, 41ltnled 10184 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S  <  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <->  -.  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  S
) )
5149, 50mpbid 222 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  S )
525breq2i 4661 . . . . . . . . 9  |-  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_ inf ( R ,  RR ,  <  ) )
53 infregelb 11007 . . . . . . . . . 10  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  e.  RR )  ->  ( ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w ) )
5418, 19, 25, 41, 53syl31anc 1329 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  w
) )
5552, 54syl5bb 272 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  A. w  e.  R  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  w
) )
5615raleqi 3142 . . . . . . . . 9  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<-> 
A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w )
57 fvex 6201 . . . . . . . . . . 11  |-  ( N `
 ( A M y ) )  e. 
_V
5857rgenw 2924 . . . . . . . . . 10  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
59 eqid 2622 . . . . . . . . . . 11  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
60 breq2 4657 . . . . . . . . . . 11  |-  ( w  =  ( N `  ( A M y ) )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<->  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6159, 60ralrnmpt 6368 . . . . . . . . . 10  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6258, 61ax-mp 5 . . . . . . . . 9  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  w  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6356, 62bitri 264 . . . . . . . 8  |-  ( A. w  e.  R  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_  w 
<-> 
A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6455, 63syl6bb 276 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  S  <->  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) ) )
6551, 64mtbid 314 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  -.  A. y  e.  Y  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_ 
( N `  ( A M y ) ) )
66 rexnal 2995 . . . . . 6  |-  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  -.  A. y  e.  Y  ( sqr `  ( ( S ^
2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) ) )
6765, 66sylibr 224 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  <_ 
( N `  ( A M y ) ) )
6832adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( 1  /  n ) )  e.  RR )
69 phnv 27669 . . . . . . . . . . . . 13  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
7010, 69syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NrmCVec )
7170ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  U  e.  NrmCVec )
7212ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  A  e.  X )
73 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
7473, 11sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
75 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( SubSp `  U )  =  (
SubSp `  U )
766, 9, 75sspba 27582 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
7770, 74, 76syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  C_  X )
7877adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  Y  C_  X )
7978sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  y  e.  X )
806, 7nvmcl 27501 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
8171, 72, 79, 80syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( A M y )  e.  X )
826, 8nvcl 27516 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
8371, 81, 82syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
8483resqcld 13035 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( N `  ( A M y ) ) ^ 2 )  e.  RR )
8568, 84letrid 10189 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( S ^
2 )  +  ( 1  /  n ) )  <_  ( ( N `  ( A M y ) ) ^ 2 )  \/  ( ( N `  ( A M y ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
8685ord 392 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( ( S ^
2 )  +  ( 1  /  n ) )  <_  ( ( N `  ( A M y ) ) ^ 2 )  -> 
( ( N `  ( A M y ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
8741adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) )  e.  RR )
8847adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  0  <_  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
896, 8nvge0 27528 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
9071, 81, 89syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
9187, 83, 88, 90le2sqd 13044 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  ( ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) ^
2 )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9238adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  =  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
9392breq1d 4663 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) ) ^ 2 )  <_  ( ( N `
 ( A M y ) ) ^
2 )  <->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9491, 93bitrd 268 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( N `  ( A M y ) ) ^ 2 ) ) )
9594notbid 308 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  <->  -.  (
( S ^ 2 )  +  ( 1  /  n ) )  <_  ( ( N `
 ( A M y ) ) ^
2 ) ) )
966, 7, 8, 13imsdval 27541 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  =  ( N `  ( A M y ) ) )
9771, 72, 79, 96syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( A D y )  =  ( N `  ( A M y ) ) )
9897oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( A D y ) ^ 2 )  =  ( ( N `
 ( A M y ) ) ^
2 ) )
9998breq1d 4663 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( N `  ( A M y ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) ) )
10086, 95, 993imtr4d 283 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  Y )  ->  ( -.  ( sqr `  (
( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  ->  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
101100reximdva 3017 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. y  e.  Y  -.  ( sqr `  ( ( S ^ 2 )  +  ( 1  /  n ) ) )  <_  ( N `  ( A M y ) )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
10267, 101mpd 15 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) )
103102ralrimiva 2966 . . 3  |-  ( ph  ->  A. n  e.  NN  E. y  e.  Y  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
104 fvex 6201 . . . . 5  |-  ( BaseSet `  W )  e.  _V
1059, 104eqeltri 2697 . . . 4  |-  Y  e. 
_V
106 nnenom 12779 . . . 4  |-  NN  ~~  om
107 oveq2 6658 . . . . . 6  |-  ( y  =  ( f `  n )  ->  ( A D y )  =  ( A D ( f `  n ) ) )
108107oveq1d 6665 . . . . 5  |-  ( y  =  ( f `  n )  ->  (
( A D y ) ^ 2 )  =  ( ( A D ( f `  n ) ) ^
2 ) )
109108breq1d 4663 . . . 4  |-  ( y  =  ( f `  n )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( A D ( f `  n ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) ) )
110105, 106, 109axcc4 9261 . . 3  |-  ( A. n  e.  NN  E. y  e.  Y  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) )  ->  E. f ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
111103, 110syl 17 . 2  |-  ( ph  ->  E. f ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )
11210adantr 481 . . 3  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  U  e.  CPreHil OLD )
11311adantr 481 . . 3  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
11412adantr 481 . . 3  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  A  e.  X
)
115 simprl 794 . . 3  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  f : NN --> Y )
116 simprr 796 . . . 4  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  A. n  e.  NN  ( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
117 fveq2 6191 . . . . . . . 8  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
118117oveq2d 6666 . . . . . . 7  |-  ( n  =  k  ->  ( A D ( f `  n ) )  =  ( A D ( f `  k ) ) )
119118oveq1d 6665 . . . . . 6  |-  ( n  =  k  ->  (
( A D ( f `  n ) ) ^ 2 )  =  ( ( A D ( f `  k ) ) ^
2 ) )
120 oveq2 6658 . . . . . . 7  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
121120oveq2d 6666 . . . . . 6  |-  ( n  =  k  ->  (
( S ^ 2 )  +  ( 1  /  n ) )  =  ( ( S ^ 2 )  +  ( 1  /  k
) ) )
122119, 121breq12d 4666 . . . . 5  |-  ( n  =  k  ->  (
( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( A D ( f `  k ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  k ) ) ) )
123122rspccva 3308 . . . 4  |-  ( ( A. n  e.  NN  ( ( A D ( f `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  /\  k  e.  NN )  ->  (
( A D ( f `  k ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  k
) ) )
124116, 123sylan 488 . . 3  |-  ( ( ( ph  /\  (
f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  /\  k  e.  NN )  ->  ( ( A D ( f `  k ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  k ) ) )
125 eqid 2622 . . 3  |-  ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  f
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  =  ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  f
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )
1266, 7, 8, 9, 112, 113, 114, 13, 14, 15, 5, 115, 124, 125minvecolem4 27736 . 2  |-  ( (
ph  /\  ( f : NN --> Y  /\  A. n  e.  NN  (
( A D ( f `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
127111, 126exlimddv 1863 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ^cexp 12860   sqrcsqrt 13973   MetOpencmopn 19736   ~~> tclm 21030   NrmCVeccnv 27439   BaseSetcba 27441   -vcnsb 27444   normCVcnmcv 27445   IndMetcims 27446   SubSpcss 27576   CPreHil OLDccphlo 27667   CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lm 21033  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-ph 27668  df-cbn 27719
This theorem is referenced by:  minvecolem7  27739
  Copyright terms: Public domain W3C validator