MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Visualization version   Unicode version

Theorem minvecolem7 27739
Description: Lemma for minveco 27740. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  = inf ( R ,  RR ,  <  )
Assertion
Ref Expression
minvecolem7  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3  |-  X  =  ( BaseSet `  U )
2 minveco.m . . 3  |-  M  =  ( -v `  U
)
3 minveco.n . . 3  |-  N  =  ( normCV `  U )
4 minveco.y . . 3  |-  Y  =  ( BaseSet `  W )
5 minveco.u . . 3  |-  ( ph  ->  U  e.  CPreHil OLD )
6 minveco.w . . 3  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
7 minveco.a . . 3  |-  ( ph  ->  A  e.  X )
8 minveco.d . . 3  |-  D  =  ( IndMet `  U )
9 minveco.j . . 3  |-  J  =  ( MetOpen `  D )
10 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
11 minveco.s . . 3  |-  S  = inf ( R ,  RR ,  <  )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 27737 . 2  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
135ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  U  e.  CPreHil OLD )
146ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
157ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  A  e.  X
)
16 0re 10040 . . . . . . 7  |-  0  e.  RR
1716a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  e.  RR )
18 0le0 11110 . . . . . . 7  |-  0  <_  0
1918a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  <_  0
)
20 simplrl 800 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  x  e.  Y
)
21 simplrr 801 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  w  e.  Y
)
22 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
23 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 27731 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( x D w ) ^
2 )  <_  (
4  x.  0 ) )
2524ex 450 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  ->  (
( x D w ) ^ 2 )  <_  ( 4  x.  0 ) ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 27738 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
2726adantrr 753 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 27738 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  (
( ( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
2928adantrl 752 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
3027, 29anbi12d 747 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  <->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) ) )
31 4cn 11098 . . . . . . 7  |-  4  e.  CC
3231mul01i 10226 . . . . . 6  |-  ( 4  x.  0 )  =  0
3332breq2i 4661 . . . . 5  |-  ( ( ( x D w ) ^ 2 )  <_  ( 4  x.  0 )  <->  ( (
x D w ) ^ 2 )  <_ 
0 )
34 phnv 27669 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
355, 34syl 17 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  NrmCVec )
3635adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  U  e.  NrmCVec )
371, 8imsmet 27546 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
3836, 37syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  D  e.  ( Met `  X ) )
39 inss1 3833 . . . . . . . . . . . . 13  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
4039, 6sseldi 3601 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
41 eqid 2622 . . . . . . . . . . . . 13  |-  ( SubSp `  U )  =  (
SubSp `  U )
421, 4, 41sspba 27582 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
4335, 40, 42syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  Y  C_  X )
4443adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  Y  C_  X )
45 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  Y )
4644, 45sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  X )
47 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  Y )
4844, 47sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  X )
49 metcl 22137 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
x D w )  e.  RR )
5038, 46, 48, 49syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  RR )
5150sqge0d 13036 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
0  <_  ( (
x D w ) ^ 2 ) )
5251biantrud 528 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  ( ( ( x D w ) ^ 2 )  <_  0  /\  0  <_  ( ( x D w ) ^
2 ) ) ) )
5350resqcld 13035 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w ) ^ 2 )  e.  RR )
54 letri3 10123 . . . . . . 7  |-  ( ( ( ( x D w ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  ( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5553, 16, 54sylancl 694 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5650recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  CC )
57 sqeq0 12927 . . . . . . . 8  |-  ( ( x D w )  e.  CC  ->  (
( ( x D w ) ^ 2 )  =  0  <->  (
x D w )  =  0 ) )
5856, 57syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( x D w )  =  0 ) )
59 meteq0 22144 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
( x D w )  =  0  <->  x  =  w ) )
6038, 46, 48, 59syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w )  =  0  <-> 
x  =  w ) )
6158, 60bitrd 268 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
x  =  w ) )
6252, 55, 613bitr2d 296 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  x  =  w ) )
6333, 62syl5bb 272 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  (
4  x.  0 )  <-> 
x  =  w ) )
6425, 30, 633imtr3d 282 . . 3  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
6564ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
66 oveq2 6658 . . . . . 6  |-  ( x  =  w  ->  ( A M x )  =  ( A M w ) )
6766fveq2d 6195 . . . . 5  |-  ( x  =  w  ->  ( N `  ( A M x ) )  =  ( N `  ( A M w ) ) )
6867breq1d 4663 . . . 4  |-  ( x  =  w  ->  (
( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
6968ralbidv 2986 . . 3  |-  ( x  =  w  ->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
7069reu4 3400 . 2  |-  ( E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w ) ) )
7112, 65, 70sylanbrc 698 1  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   2c2 11070   4c4 11072   ^cexp 12860   Metcme 19732   MetOpencmopn 19736   NrmCVeccnv 27439   BaseSetcba 27441   -vcnsb 27444   normCVcnmcv 27445   IndMetcims 27446   SubSpcss 27576   CPreHil OLDccphlo 27667   CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lm 21033  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-ph 27668  df-cbn 27719
This theorem is referenced by:  minveco  27740
  Copyright terms: Public domain W3C validator