MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprm0 Structured version   Visualization version   Unicode version

Theorem modprm0 15510
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprm0
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 15509 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
2 reurex 3160 . . . 4  |-  ( E! r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  E. r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
3 prmz 15389 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
433ad2ant1 1082 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  ZZ )
54adantl 482 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  ZZ )
6 elfzelz 12342 . . . . . . . . . . 11  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  ZZ )
76adantr 481 . . . . . . . . . 10  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  ZZ )
8 elfzoelz 12470 . . . . . . . . . . 11  |-  ( I  e.  ( 1..^ P )  ->  I  e.  ZZ )
983ad2ant3 1084 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  ZZ )
10 zmulcl 11426 . . . . . . . . . 10  |-  ( ( r  e.  ZZ  /\  I  e.  ZZ )  ->  ( r  x.  I
)  e.  ZZ )
117, 9, 10syl2an 494 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  ZZ )
125, 11zsubcld 11487 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  ZZ )
13 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
14133ad2ant1 1082 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  NN )
1514adantl 482 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  NN )
16 zmodfzo 12693 . . . . . . . 8  |-  ( ( ( P  -  (
r  x.  I ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P ) )
1712, 15, 16syl2anc 693 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  mod 
P )  e.  ( 0..^ P ) )
188zred 11482 . . . . . . . . . . 11  |-  ( I  e.  ( 1..^ P )  ->  I  e.  RR )
19183ad2ant3 1084 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  RR )
2019adantl 482 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  RR )
2113nnred 11035 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  RR )
22213ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR )
2322adantl 482 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  RR )
246zred 11482 . . . . . . . . . . . 12  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  RR )
2524adantr 481 . . . . . . . . . . 11  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  RR )
26 remulcl 10021 . . . . . . . . . . 11  |-  ( ( r  e.  RR  /\  I  e.  RR )  ->  ( r  x.  I
)  e.  RR )
2725, 19, 26syl2an 494 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  RR )
2823, 27resubcld 10458 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  RR )
29 elfzoelz 12470 . . . . . . . . . . 11  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
30293ad2ant2 1083 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
3130adantl 482 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  ZZ )
3213nnrpd 11870 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  RR+ )
33323ad2ant1 1082 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR+ )
3433adantl 482 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  RR+ )
35 modaddmulmod 12737 . . . . . . . . 9  |-  ( ( ( I  e.  RR  /\  ( P  -  (
r  x.  I ) )  e.  RR  /\  N  e.  ZZ )  /\  P  e.  RR+ )  ->  ( ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod 
P )  x.  N
) )  mod  P
)  =  ( ( I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  mod  P ) )
3620, 28, 31, 34, 35syl31anc 1329 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  -  ( r  x.  I
) )  x.  N
) )  mod  P
) )
3713nncnd 11036 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  CC )
38373ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  CC )
3938adantl 482 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  CC )
406zcnd 11483 . . . . . . . . . . . . 13  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  CC )
4140adantr 481 . . . . . . . . . . . 12  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  CC )
428zcnd 11483 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  I  e.  CC )
43423ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  CC )
44 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( r  e.  CC  /\  I  e.  CC )  ->  ( r  x.  I
)  e.  CC )
4541, 43, 44syl2an 494 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  CC )
4629zcnd 11483 . . . . . . . . . . . . 13  |-  ( N  e.  ( 1..^ P )  ->  N  e.  CC )
47463ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  CC )
4847adantl 482 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  CC )
4939, 45, 48subdird 10487 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  x.  N )  =  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) )
5049oveq2d 6666 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  =  ( I  +  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) ) )
5150oveq1d 6665 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
52 mulcom 10022 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  CC  /\  N  e.  CC )  ->  ( P  x.  N
)  =  ( N  x.  P ) )
5337, 46, 52syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( P  x.  N )  =  ( N  x.  P ) )
5453oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  ( ( N  x.  P
)  mod  P )
)
55 mulmod0 12676 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  P  e.  RR+ )  -> 
( ( N  x.  P )  mod  P
)  =  0 )
5629, 32, 55syl2anr 495 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( N  x.  P )  mod  P )  =  0 )
5754, 56eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
58573adant3 1081 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod 
P )  =  0 )
5958adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
6041adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  r  e.  CC )
6143adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  CC )
6260, 61, 48mul32d 10246 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  =  ( ( r  x.  N )  x.  I
) )
6362oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
6429zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( 1..^ P )  ->  N  e.  RR )
65643ad2ant2 1083 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  RR )
66 remulcl 10021 . . . . . . . . . . . . . . . . 17  |-  ( ( r  e.  RR  /\  N  e.  RR )  ->  ( r  x.  N
)  e.  RR )
6725, 65, 66syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  N )  e.  RR )
689adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  ZZ )
69 modmulmod 12735 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  x.  N
)  e.  RR  /\  I  e.  ZZ  /\  P  e.  RR+ )  ->  (
( ( ( r  x.  N )  mod 
P )  x.  I
)  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod 
P ) )
7067, 68, 34, 69syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
7163, 70eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )
7259, 71oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod 
P ) )  =  ( 0  -  (
( ( ( r  x.  N )  mod 
P )  x.  I
)  mod  P )
) )
7372oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )  mod  P
) )
74 remulcl 10021 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  RR  /\  N  e.  RR )  ->  ( P  x.  N
)  e.  RR )
7521, 64, 74syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( P  x.  N )  e.  RR )
76753adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( P  x.  N )  e.  RR )
7776adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  x.  N )  e.  RR )
7865adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  RR )
7927, 78remulcld 10070 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  e.  RR )
80 modsubmodmod 12729 . . . . . . . . . . . . 13  |-  ( ( ( P  x.  N
)  e.  RR  /\  ( ( r  x.  I )  x.  N
)  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( ( P  x.  N )  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod  P
) )  mod  P
)  =  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )
8177, 79, 34, 80syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  mod  P
) )
82 mulcom 10022 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  CC  /\  r  e.  CC )  ->  ( N  x.  r
)  =  ( r  x.  N ) )
8347, 40, 82syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( N  x.  r )  =  ( r  x.  N ) )
8483oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( N  x.  r
)  mod  P )  =  ( ( r  x.  N )  mod 
P ) )
8584eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  <->  (
( r  x.  N
)  mod  P )  =  1 ) )
8685biimpd 219 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  -> 
( ( r  x.  N )  mod  P
)  =  1 ) )
8786impancom 456 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( r  x.  N )  mod 
P )  =  1 ) )
8887imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  N )  mod  P )  =  1 )
8988oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  N
)  mod  P )  x.  I )  =  ( 1  x.  I ) )
9089oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( 1  x.  I )  mod  P
) )
9190oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( ( ( r  x.  N
)  mod  P )  x.  I )  mod  P
) )  =  ( 0  -  ( ( 1  x.  I )  mod  P ) ) )
9291oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( 1  x.  I )  mod  P
) )  mod  P
) )
9361mulid2d 10058 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 1  x.  I )  =  I )
9493oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  ( I  mod  P
) )
9532, 18anim12ci 591 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( I  e.  RR  /\  P  e.  RR+ ) )
96 elfzo2 12473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  ( 1..^ P )  <->  ( I  e.  ( ZZ>= `  1 )  /\  P  e.  ZZ  /\  I  <  P ) )
97 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( I  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  I  e.  ZZ  /\  1  <_  I ) )
98 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  0  e.  RR )
99 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  1  e.  RR )
100 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  I  e.  RR )
10198, 99, 1003jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( I  e.  ZZ  ->  (
0  e.  RR  /\  1  e.  RR  /\  I  e.  RR ) )
102101adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  I  e.  RR )
)
103 0le1 10551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  0  <_  1
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( I  e.  ZZ  ->  0  <_  1 )
105104anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
( 0  <_  1  /\  1  <_  I ) )
106 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  I  e.  RR )  ->  (
( 0  <_  1  /\  1  <_  I )  ->  0  <_  I
) )
107102, 105, 106sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
0  <_  I )
1081073adant1 1079 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1  e.  ZZ  /\  I  e.  ZZ  /\  1  <_  I )  ->  0  <_  I )
10997, 108sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( I  e.  ( ZZ>= `  1
)  ->  0  <_  I )
1101093ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  0  <_  I )
111 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  I  <  P )
112110, 111jca 554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  (
0  <_  I  /\  I  <  P ) )
11396, 112sylbi 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  ( 1..^ P )  ->  ( 0  <_  I  /\  I  <  P ) )
114113adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( 0  <_  I  /\  I  <  P ) )
11595, 114jca 554 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( (
I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) ) )
1161153adant2 1080 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( I  e.  RR  /\  P  e.  RR+ )  /\  (
0  <_  I  /\  I  <  P ) ) )
117116adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) ) )
118 modid 12695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) )  ->  ( I  mod  P )  =  I )
119117, 118syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  mod  P )  =  I )
12094, 119eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  I )
121120oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( 1  x.  I )  mod 
P ) )  =  ( 0  -  I
) )
122121oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( 1  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
12392, 122eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
12473, 81, 1233eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
125124oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  mod 
P ) )  =  ( I  +  ( ( 0  -  I
)  mod  P )
) )
126125oveq1d 6665 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( 0  -  I )  mod  P
) )  mod  P
) )
12777, 79resubcld 10458 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  e.  RR )
128 modadd2mod 12720 . . . . . . . . . 10  |-  ( ( ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ )  ->  (
( I  +  ( ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) ) )  mod 
P ) )
129127, 20, 34, 128syl3anc 1326 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
130 0red 10041 . . . . . . . . . . . . . . . 16  |-  ( I  e.  ( 1..^ P )  ->  0  e.  RR )
131130, 18resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 1..^ P )  ->  ( 0  -  I )  e.  RR )
132131adantl 482 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( 0  -  I )  e.  RR )
13318adantl 482 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  I  e.  RR )
13432adantr 481 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR+ )
135132, 133, 1343jca 1242 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( (
0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
1361353adant2 1080 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( 0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
137136adantl 482 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
138 modadd2mod 12720 . . . . . . . . . . 11  |-  ( ( ( 0  -  I
)  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ )  ->  (
( I  +  ( ( 0  -  I
)  mod  P )
)  mod  P )  =  ( ( I  +  ( 0  -  I ) )  mod 
P ) )
139137, 138syl 17 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  ( ( I  +  ( 0  -  I
) )  mod  P
) )
140 0cnd 10033 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 1..^ P )  ->  0  e.  CC )
14142, 140pncan3d 10395 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  ( I  +  ( 0  -  I ) )  =  0 )
1421413ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( I  +  ( 0  -  I
) )  =  0 )
143142adantl 482 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( 0  -  I ) )  =  0 )
144143oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( 0  -  I ) )  mod  P )  =  ( 0  mod  P
) )
145 0mod 12701 . . . . . . . . . . . . 13  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
14632, 145syl 17 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
1471463ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( 0  mod 
P )  =  0 )
148147adantl 482 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  mod  P )  =  0 )
149139, 144, 1483eqtrd 2660 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  0 )
150126, 129, 1493eqtr3d 2664 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) ) )  mod  P )  =  0 )
15136, 51, 1503eqtrd 2660 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  0 )
152 oveq1 6657 . . . . . . . . . . 11  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
j  x.  N )  =  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )
153152oveq2d 6666 . . . . . . . . . 10  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
I  +  ( j  x.  N ) )  =  ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod 
P )  x.  N
) ) )
154153oveq1d 6665 . . . . . . . . 9  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )  mod 
P ) )
155154eqeq1d 2624 . . . . . . . 8  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 ) )
156155rspcev 3309 . . . . . . 7  |-  ( ( ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P )  /\  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
15717, 151, 156syl2anc 693 . . . . . 6  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
158157ex 450 . . . . 5  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
159158rexlimiva 3028 . . . 4  |-  ( E. r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
1601, 2, 1593syl 18 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
1611603adant3 1081 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
162161pm2.43i 52 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   E!wreu 2914   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326  ..^cfzo 12465    mod cmo 12668   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  nnnn0modprm0  15511
  Copyright terms: Public domain W3C validator