MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logrec Structured version   Visualization version   Unicode version

Theorem logrec 24501
Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.)
Assertion
Ref Expression
logrec  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  A )  = 
-u ( log `  (
1  /  A ) ) )

Proof of Theorem logrec
StepHypRef Expression
1 reccl 10692 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  CC )
2 recne0 10698 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  =/=  0 )
3 eflog 24323 . . . . . . . 8  |-  ( ( ( 1  /  A
)  e.  CC  /\  ( 1  /  A
)  =/=  0 )  ->  ( exp `  ( log `  ( 1  /  A ) ) )  =  ( 1  /  A ) )
41, 2, 3syl2anc 693 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  ( 1  /  A ) ) )  =  ( 1  /  A ) )
54eqcomd 2628 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  =  ( exp `  ( log `  (
1  /  A ) ) ) )
65oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  ( 1  /  ( exp `  ( log `  ( 1  /  A ) ) ) ) )
7 eflog 24323 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
8 recrec 10722 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
97, 8eqtr4d 2659 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  ( 1  / 
( 1  /  A
) ) )
101, 2logcld 24317 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  (
1  /  A ) )  e.  CC )
11 efneg 14828 . . . . . 6  |-  ( ( log `  ( 1  /  A ) )  e.  CC  ->  ( exp `  -u ( log `  (
1  /  A ) ) )  =  ( 1  /  ( exp `  ( log `  (
1  /  A ) ) ) ) )
1210, 11syl 17 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  -u ( log `  ( 1  /  A ) ) )  =  ( 1  / 
( exp `  ( log `  ( 1  /  A ) ) ) ) )
136, 9, 123eqtr4d 2666 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  ( exp `  -u ( log `  ( 1  /  A ) ) ) )
14133adant3 1081 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( exp `  ( log `  A
) )  =  ( exp `  -u ( log `  ( 1  /  A ) ) ) )
1514fveq2d 6195 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  ( exp `  ( log `  A ) ) )  =  ( log `  ( exp `  -u ( log `  ( 1  /  A ) ) ) ) )
16 logrncl 24314 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  ran  log )
17163adant3 1081 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  A )  e. 
ran  log )
18 logef 24328 . . 3  |-  ( ( log `  A )  e.  ran  log  ->  ( log `  ( exp `  ( log `  A
) ) )  =  ( log `  A
) )
1917, 18syl 17 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  ( exp `  ( log `  A ) ) )  =  ( log `  A ) )
20 df-ne 2795 . . . . 5  |-  ( ( Im `  ( log `  A ) )  =/= 
pi 
<->  -.  ( Im `  ( log `  A ) )  =  pi )
21 lognegb 24336 . . . . . . . . . . . 12  |-  ( ( ( 1  /  A
)  e.  CC  /\  ( 1  /  A
)  =/=  0 )  ->  ( -u (
1  /  A )  e.  RR+  <->  ( Im `  ( log `  ( 1  /  A ) ) )  =  pi ) )
221, 2, 21syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u ( 1  /  A )  e.  RR+  <->  (
Im `  ( log `  ( 1  /  A
) ) )  =  pi ) )
2322biimprd 238 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  ( 1  /  A ) ) )  =  pi  ->  -u ( 1  /  A
)  e.  RR+ )
)
24 ax-1cn 9994 . . . . . . . . . . . 12  |-  1  e.  CC
25 divneg2 10749 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  A  =/=  0 )  ->  -u (
1  /  A )  =  ( 1  /  -u A ) )
2624, 25mp3an1 1411 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u ( 1  /  A
)  =  ( 1  /  -u A ) )
2726eleq1d 2686 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u ( 1  /  A )  e.  RR+  <->  (
1  /  -u A
)  e.  RR+ )
)
2823, 27sylibd 229 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  ( 1  /  A ) ) )  =  pi  ->  ( 1  /  -u A
)  e.  RR+ )
)
29 negcl 10281 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  -u A  e.  CC )
3029adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u A  e.  CC )
31 negeq0 10335 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A  =  0  <->  -u A  =  0 ) )
3231necon3bid 2838 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A  =/=  0  <->  -u A  =/=  0 ) )
3332biimpa 501 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u A  =/=  0 )
34 rpreccl 11857 . . . . . . . . . . 11  |-  ( ( 1  /  -u A
)  e.  RR+  ->  ( 1  /  ( 1  /  -u A ) )  e.  RR+ )
35 recrec 10722 . . . . . . . . . . . 12  |-  ( (
-u A  e.  CC  /\  -u A  =/=  0
)  ->  ( 1  /  ( 1  /  -u A ) )  = 
-u A )
3635eleq1d 2686 . . . . . . . . . . 11  |-  ( (
-u A  e.  CC  /\  -u A  =/=  0
)  ->  ( (
1  /  ( 1  /  -u A ) )  e.  RR+  <->  -u A  e.  RR+ ) )
3734, 36syl5ib 234 . . . . . . . . . 10  |-  ( (
-u A  e.  CC  /\  -u A  =/=  0
)  ->  ( (
1  /  -u A
)  e.  RR+  ->  -u A  e.  RR+ ) )
3830, 33, 37syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  /  -u A )  e.  RR+  -> 
-u A  e.  RR+ ) )
3928, 38syld 47 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  ( 1  /  A ) ) )  =  pi  ->  -u A  e.  RR+ ) )
40 lognegb 24336 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
4139, 40sylibd 229 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  ( 1  /  A ) ) )  =  pi  ->  ( Im `  ( log `  A ) )  =  pi ) )
4241con3d 148 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -.  ( Im
`  ( log `  A
) )  =  pi 
->  -.  ( Im `  ( log `  ( 1  /  A ) ) )  =  pi ) )
43423impia 1261 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -.  ( Im `  ( log `  A ) )  =  pi )  ->  -.  ( Im `  ( log `  ( 1  /  A
) ) )  =  pi )
4420, 43syl3an3b 1364 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  -.  ( Im `  ( log `  ( 1  /  A
) ) )  =  pi )
45 logrncl 24314 . . . . . 6  |-  ( ( ( 1  /  A
)  e.  CC  /\  ( 1  /  A
)  =/=  0 )  ->  ( log `  (
1  /  A ) )  e.  ran  log )
461, 2, 45syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  (
1  /  A ) )  e.  ran  log )
47 logreclem 24500 . . . . 5  |-  ( ( ( log `  (
1  /  A ) )  e.  ran  log  /\ 
-.  ( Im `  ( log `  ( 1  /  A ) ) )  =  pi )  ->  -u ( log `  (
1  /  A ) )  e.  ran  log )
4846, 47stoic3 1701 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -.  ( Im `  ( log `  ( 1  /  A
) ) )  =  pi )  ->  -u ( log `  ( 1  /  A ) )  e. 
ran  log )
4944, 48syld3an3 1371 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  -u ( log `  ( 1  /  A ) )  e. 
ran  log )
50 logef 24328 . . 3  |-  ( -u ( log `  ( 1  /  A ) )  e.  ran  log  ->  ( log `  ( exp `  -u ( log `  (
1  /  A ) ) ) )  = 
-u ( log `  (
1  /  A ) ) )
5149, 50syl 17 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  ( exp `  -u ( log `  ( 1  /  A ) ) ) )  =  -u ( log `  ( 1  /  A ) ) )
5215, 19, 513eqtr3d 2664 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
Im `  ( log `  A ) )  =/= 
pi )  ->  ( log `  A )  = 
-u ( log `  (
1  /  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   -ucneg 10267    / cdiv 10684   RR+crp 11832   Imcim 13838   expce 14792   picpi 14797   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  logbrec  24520  isosctrlem2  24549
  Copyright terms: Public domain W3C validator