MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trireciplem Structured version   Visualization version   Unicode version

Theorem trireciplem 14594
Description: Lemma for trirecip 14595. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
Assertion
Ref Expression
trireciplem  |-  seq 1
(  +  ,  F
)  ~~>  1

Proof of Theorem trireciplem
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 1cnd 10056 . . . . . 6  |-  ( T. 
->  1  e.  CC )
4 divcnv 14585 . . . . . 6  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
53, 4syl 17 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  ~~>  0 )
6 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
76mptex 6486 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  e.  _V
87a1i 11 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  e.  _V )
96mptex 6486 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  n ) )  e.  _V
109a1i 11 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  e.  _V )
11 peano2nn 11032 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1211adantl 482 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
13 oveq2 6658 . . . . . . . . 9  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
14 eqid 2622 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  =  ( n  e.  NN  |->  ( 1  /  n ) )
15 ovex 6678 . . . . . . . . 9  |-  ( 1  /  ( k  +  1 ) )  e. 
_V
1613, 14, 15fvmpt 6282 . . . . . . . 8  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( 1  /  ( k  +  1 ) ) )
1712, 16syl 17 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( 1  /  ( k  +  1 ) ) )
18 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
1918oveq2d 6666 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  ( n  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
20 eqid 2622 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )
2119, 20, 15fvmpt 6282 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  =  ( 1  /  ( k  +  1 ) ) )
2221adantl 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  =  ( 1  /  ( k  +  1 ) ) )
2317, 22eqtr4d 2659 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )
241, 2, 2, 8, 10, 23climshft2 14313 . . . . 5  |-  ( T. 
->  ( ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 ) )
255, 24mpbird 247 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  ~~>  0 )
26 seqex 12803 . . . . 5  |-  seq 1
(  +  ,  F
)  e.  _V
2726a1i 11 . . . 4  |-  ( T. 
->  seq 1 (  +  ,  F )  e. 
_V )
2812nnrecred 11066 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  RR )
2928recnd 10068 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  CC )
3022, 29eqeltrd 2701 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  e.  CC )
3122oveq2d 6666 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )  =  ( 1  -  ( 1  / 
( k  +  1 ) ) ) )
32 elfznn 12370 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... k )  ->  j  e.  NN )
3332adantl 482 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  NN )
3433nncnd 11036 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  CC )
35 peano2cn 10208 . . . . . . . . . 10  |-  ( j  e.  CC  ->  (
j  +  1 )  e.  CC )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  CC )
37 peano2nn 11032 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  NN )
3833, 37syl 17 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  NN )
3933, 38nnmulcld 11068 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  NN )
4039nncnd 11036 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  CC )
4139nnne0d 11065 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  =/=  0 )
4236, 34, 40, 41divsubdird 10840 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( ( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  -  ( j  /  (
j  x.  ( j  +  1 ) ) ) ) )
43 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
44 pncan2 10288 . . . . . . . . . 10  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  j
)  =  1 )
4534, 43, 44sylancl 694 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  -  j )  =  1 )
4645oveq1d 6665 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
4736mulid1d 10057 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  1 )  =  ( j  +  1 ) )
4836, 34mulcomd 10061 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  j )  =  ( j  x.  ( j  +  1 ) ) )
4947, 48oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( ( j  +  1 )  / 
( j  x.  (
j  +  1 ) ) ) )
50 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  1  e.  CC )
5133nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  =/=  0 )
5238nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  =/=  0 )
5350, 34, 36, 51, 52divcan5d 10827 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( 1  / 
j ) )
5449, 53eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
j ) )
5534mulid1d 10057 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  1 )  =  j )
5655oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( j  / 
( j  x.  (
j  +  1 ) ) ) )
5750, 36, 34, 52, 51divcan5d 10827 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5856, 57eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5954, 58oveq12d 6668 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  /  (
j  x.  ( j  +  1 ) ) )  -  ( j  /  ( j  x.  ( j  +  1 ) ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6042, 46, 593eqtr3d 2664 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6160sumeq2dv 14433 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  sum_ j  e.  ( 1 ... k ) ( ( 1  /  j
)  -  ( 1  /  ( j  +  1 ) ) ) )
62 oveq2 6658 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  n )  =  ( 1  / 
j ) )
63 oveq2 6658 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( j  +  1 ) ) )
64 oveq2 6658 . . . . . . . 8  |-  ( n  =  1  ->  (
1  /  n )  =  ( 1  / 
1 ) )
65 1div1e1 10717 . . . . . . . 8  |-  ( 1  /  1 )  =  1
6664, 65syl6eq 2672 . . . . . . 7  |-  ( n  =  1  ->  (
1  /  n )  =  1 )
67 nnz 11399 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
6867adantl 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ZZ )
6912, 1syl6eleq 2711 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
70 elfznn 12370 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( k  +  1 ) )  ->  n  e.  NN )
7170adantl 482 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  n  e.  NN )
7271nnrecred 11066 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  RR )
7372recnd 10068 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  CC )
7462, 63, 66, 13, 68, 69, 73telfsum 14536 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
7561, 74eqtrd 2656 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
76 id 22 . . . . . . . . . 10  |-  ( n  =  j  ->  n  =  j )
77 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
7876, 77oveq12d 6668 . . . . . . . . 9  |-  ( n  =  j  ->  (
n  x.  ( n  +  1 ) )  =  ( j  x.  ( j  +  1 ) ) )
7978oveq2d 6666 . . . . . . . 8  |-  ( n  =  j  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
80 trireciplem.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
81 ovex 6678 . . . . . . . 8  |-  ( 1  /  ( j  x.  ( j  +  1 ) ) )  e. 
_V
8279, 80, 81fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN  ->  ( F `  j )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
8333, 82syl 17 . . . . . 6  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  ( F `  j )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
84 simpr 477 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
8584, 1syl6eleq 2711 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
8639nnrecred 11066 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  RR )
8786recnd 10068 . . . . . 6  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
8883, 85, 87fsumser 14461 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (  seq 1 (  +  ,  F ) `  k ) )
8931, 75, 883eqtr2rd 2663 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( 1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k ) ) )
901, 2, 25, 3, 27, 30, 89climsubc2 14369 . . 3  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 1  -  0 ) )
9190trud 1493 . 2  |-  seq 1
(  +  ,  F
)  ~~>  ( 1  -  0 )
92 1m0e1 11131 . 2  |-  ( 1  -  0 )  =  1
9391, 92breqtri 4678 1  |-  seq 1
(  +  ,  F
)  ~~>  1
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  trirecip  14595  stirlinglem12  40302
  Copyright terms: Public domain W3C validator