MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcube Structured version   Visualization version   Unicode version

Theorem fsumcube 14791
Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.)
Assertion
Ref Expression
fsumcube  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  /  4 ) )
Distinct variable group:    T, k

Proof of Theorem fsumcube
StepHypRef Expression
1 3nn0 11310 . . 3  |-  3  e.  NN0
2 fsumkthpow 14787 . . 3  |-  ( ( 3  e.  NN0  /\  T  e.  NN0 )  ->  sum_ k  e.  ( 0 ... T ) ( k ^ 3 )  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  + 
1 ) )  -  ( ( 3  +  1 ) BernPoly  0 ) )  /  ( 3  +  1 ) ) )
31, 2mpan 706 . 2  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly 
0 ) )  / 
( 3  +  1 ) ) )
4 df-4 11081 . . . . . 6  |-  4  =  ( 3  +  1 )
54oveq1i 6660 . . . . 5  |-  ( 4 BernPoly  ( T  +  1
) )  =  ( ( 3  +  1 ) BernPoly  ( T  + 
1 ) )
64oveq1i 6660 . . . . 5  |-  ( 4 BernPoly 
0 )  =  ( ( 3  +  1 ) BernPoly  0 )
75, 6oveq12i 6662 . . . 4  |-  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( ( 3  +  1 ) BernPoly  ( T  +  1
) )  -  (
( 3  +  1 ) BernPoly  0 ) )
87, 4oveq12i 6662 . . 3  |-  ( ( ( 4 BernPoly  ( T  +  1 ) )  -  ( 4 BernPoly  0
) )  /  4
)  =  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly  0
) )  /  (
3  +  1 ) )
9 nn0cn 11302 . . . . . . . 8  |-  ( T  e.  NN0  ->  T  e.  CC )
10 peano2cn 10208 . . . . . . . 8  |-  ( T  e.  CC  ->  ( T  +  1 )  e.  CC )
119, 10syl 17 . . . . . . 7  |-  ( T  e.  NN0  ->  ( T  +  1 )  e.  CC )
12 bpoly4 14790 . . . . . . 7  |-  ( ( T  +  1 )  e.  CC  ->  (
4 BernPoly  ( T  +  1 ) )  =  ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
1311, 12syl 17 . . . . . 6  |-  ( T  e.  NN0  ->  ( 4 BernPoly  ( T  +  1
) )  =  ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
14 4nn 11187 . . . . . . . . . . . . . 14  |-  4  e.  NN
15 0exp 12895 . . . . . . . . . . . . . 14  |-  ( 4  e.  NN  ->  (
0 ^ 4 )  =  0 )
1614, 15ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0 ^ 4 )  =  0
17 3nn 11186 . . . . . . . . . . . . . . . 16  |-  3  e.  NN
18 0exp 12895 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ^ 3 )  =  0
2019oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( 0 ^ 3 ) )  =  ( 2  x.  0 )
21 2t0e0 11183 . . . . . . . . . . . . . 14  |-  ( 2  x.  0 )  =  0
2220, 21eqtri 2644 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 0 ^ 3 ) )  =  0
2316, 22oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  =  ( 0  -  0 )
24 0m0e0 11130 . . . . . . . . . . . 12  |-  ( 0  -  0 )  =  0
2523, 24eqtri 2644 . . . . . . . . . . 11  |-  ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  =  0
26 sq0 12955 . . . . . . . . . . 11  |-  ( 0 ^ 2 )  =  0
2725, 26oveq12i 6662 . . . . . . . . . 10  |-  ( ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  =  ( 0  +  0 )
28 00id 10211 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
2927, 28eqtri 2644 . . . . . . . . 9  |-  ( ( ( 0 ^ 4 )  -  ( 2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  =  0
3029oveq1i 6660 . . . . . . . 8  |-  ( ( ( ( 0 ^ 4 )  -  (
2  x.  ( 0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) )  =  ( 0  -  ( 1  / ; 3 0 ) )
31 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
32 bpoly4 14790 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
4 BernPoly  0 )  =  ( ( ( ( 0 ^ 4 )  -  ( 2  x.  (
0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
3331, 32ax-mp 5 . . . . . . . 8  |-  ( 4 BernPoly 
0 )  =  ( ( ( ( 0 ^ 4 )  -  ( 2  x.  (
0 ^ 3 ) ) )  +  ( 0 ^ 2 ) )  -  ( 1  / ; 3 0 ) )
34 df-neg 10269 . . . . . . . 8  |-  -u (
1  / ; 3 0 )  =  ( 0  -  (
1  / ; 3 0 ) )
3530, 33, 343eqtr4i 2654 . . . . . . 7  |-  ( 4 BernPoly 
0 )  =  -u ( 1  / ; 3 0 )
3635a1i 11 . . . . . 6  |-  ( T  e.  NN0  ->  ( 4 BernPoly 
0 )  =  -u ( 1  / ; 3 0 ) )
3713, 36oveq12d 6668 . . . . 5  |-  ( T  e.  NN0  ->  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  -  -u (
1  / ; 3 0 ) ) )
38 4nn0 11311 . . . . . . . . . . . 12  |-  4  e.  NN0
39 expcl 12878 . . . . . . . . . . . 12  |-  ( ( ( T  +  1 )  e.  CC  /\  4  e.  NN0 )  -> 
( ( T  + 
1 ) ^ 4 )  e.  CC )
4038, 39mpan2 707 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 4 )  e.  CC )
41 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
42 expcl 12878 . . . . . . . . . . . . 13  |-  ( ( ( T  +  1 )  e.  CC  /\  3  e.  NN0 )  -> 
( ( T  + 
1 ) ^ 3 )  e.  CC )
431, 42mpan2 707 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 3 )  e.  CC )
44 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( ( T  + 
1 ) ^ 3 )  e.  CC )  ->  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) )  e.  CC )
4541, 43, 44sylancr 695 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ 3 ) )  e.  CC )
4640, 45subcld 10392 . . . . . . . . . 10  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  e.  CC )
47 sqcl 12925 . . . . . . . . . 10  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ 2 )  e.  CC )
4846, 47addcld 10059 . . . . . . . . 9  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC )
4910, 48syl 17 . . . . . . . 8  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC )
509, 49syl 17 . . . . . . 7  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  e.  CC )
51 0nn0 11307 . . . . . . . . . 10  |-  0  e.  NN0
521, 51deccl 11512 . . . . . . . . 9  |- ; 3 0  e.  NN0
5352nn0cni 11304 . . . . . . . 8  |- ; 3 0  e.  CC
5452nn0rei 11303 . . . . . . . . 9  |- ; 3 0  e.  RR
55 10pos 11515 . . . . . . . . . 10  |-  0  < ; 1
0
5617, 51, 51, 55declti 11546 . . . . . . . . 9  |-  0  < ; 3
0
5754, 56gt0ne0ii 10564 . . . . . . . 8  |- ; 3 0  =/=  0
5853, 57reccli 10755 . . . . . . 7  |-  ( 1  / ; 3 0 )  e.  CC
59 subcl 10280 . . . . . . 7  |-  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC  /\  ( 1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  e.  CC )
6050, 58, 59sylancl 694 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  e.  CC )
61 subneg 10330 . . . . . 6  |-  ( ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  e.  CC  /\  (
1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  -  -u ( 1  / ; 3 0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) ) )
6260, 58, 61sylancl 694 . . . . 5  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  -  -u ( 1  / ; 3 0 ) )  =  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) ) )
63 npcan 10290 . . . . . . . 8  |-  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  e.  CC  /\  ( 1  / ; 3 0 )  e.  CC )  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
6449, 58, 63sylancl 694 . . . . . . 7  |-  ( T  e.  CC  ->  (
( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  +  ( ( T  + 
1 ) ^ 2 ) )  -  (
1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
659, 64syl 17 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( ( ( T  +  1 ) ^
4 )  -  (
2  x.  ( ( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) ) )
66 2p2e4 11144 . . . . . . . . . . 11  |-  ( 2  +  2 )  =  4
6766eqcomi 2631 . . . . . . . . . 10  |-  4  =  ( 2  +  2 )
6867oveq2i 6661 . . . . . . . . 9  |-  ( ( T  +  1 ) ^ 4 )  =  ( ( T  + 
1 ) ^ (
2  +  2 ) )
69 df-3 11080 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
7069oveq2i 6661 . . . . . . . . . 10  |-  ( ( T  +  1 ) ^ 3 )  =  ( ( T  + 
1 ) ^ (
2  +  1 ) )
7170oveq2i 6661 . . . . . . . . 9  |-  ( 2  x.  ( ( T  +  1 ) ^
3 ) )  =  ( 2  x.  (
( T  +  1 ) ^ ( 2  +  1 ) ) )
7268, 71oveq12i 6662 . . . . . . . 8  |-  ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  ( ( T  + 
1 ) ^ 3 ) ) )  =  ( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )
7372oveq1i 6660 . . . . . . 7  |-  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( ( ( T  +  1 ) ^ ( 2  +  2 ) )  -  ( 2  x.  (
( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )
74 2nn0 11309 . . . . . . . . . . . . 13  |-  2  e.  NN0
75 expadd 12902 . . . . . . . . . . . . 13  |-  ( ( ( T  +  1 )  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
( T  +  1 ) ^ ( 2  +  2 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
7674, 74, 75mp3an23 1416 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ ( 2  +  2 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
77 1nn0 11308 . . . . . . . . . . . . . 14  |-  1  e.  NN0
78 expadd 12902 . . . . . . . . . . . . . 14  |-  ( ( ( T  +  1 )  e.  CC  /\  2  e.  NN0  /\  1  e.  NN0 )  ->  (
( T  +  1 ) ^ ( 2  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) )
7974, 77, 78mp3an23 1416 . . . . . . . . . . . . 13  |-  ( ( T  +  1 )  e.  CC  ->  (
( T  +  1 ) ^ ( 2  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) )
8079oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( T  +  1 )  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) )  =  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) ) )
8176, 80oveq12d 6668 . . . . . . . . . . 11  |-  ( ( T  +  1 )  e.  CC  ->  (
( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( 2  x.  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
8210, 81syl 17 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( 2  x.  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
8310sqcld 13006 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  e.  CC )
8483mulid1d 10057 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  1 )  =  ( ( T  +  1 ) ^
2 ) )
8584eqcomd 2628 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )
8682, 85oveq12d 6668 . . . . . . . . 9  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  =  ( ( ( ( ( T  + 
1 ) ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
8710exp1d 13003 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 1 )  =  ( T  + 
1 ) )
8887oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
2  x.  ( ( T  +  1 ) ^ 1 ) )  =  ( 2  x.  ( T  +  1 ) ) )
8988oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( 2  x.  ( ( T  +  1 ) ^
1 ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  ( T  +  1 ) ) ) )
9089oveq2d 6666 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( T  +  1 ) ) ) ) )
9187, 10eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 1 )  e.  CC )
92 mul12 10202 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( T  + 
1 ) ^ 1 )  e.  CC )  ->  ( 2  x.  ( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 1 ) ) )  =  ( ( ( T  + 
1 ) ^ 2 )  x.  ( 2  x.  ( ( T  +  1 ) ^
1 ) ) ) )
9341, 83, 91, 92mp3an2i 1429 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( 2  x.  (
( T  +  1 ) ^ 1 ) ) ) )
9493oveq2d 6666 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( ( T  +  1 ) ^ 1 ) ) ) ) )
95 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( T  +  1
)  e.  CC )  ->  ( 2  x.  ( T  +  1 ) )  e.  CC )
9641, 10, 95sylancr 695 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  e.  CC )
9783, 83, 96subdid 10486 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
2 ) )  -  ( ( ( T  +  1 ) ^
2 )  x.  (
2  x.  ( T  +  1 ) ) ) ) )
9890, 94, 973eqtr4d 2666 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  -  ( 2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 1 ) ) ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) ) ) )
9998oveq1d 6665 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
10083, 96subcld 10392 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  e.  CC )
101 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
102 adddi 10025 . . . . . . . . . . . . 13  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( T  +  1 ) ^
2 )  x.  (
( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 ) )  =  ( ( ( ( T  + 
1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) ) )
103101, 102mp3an3 1413 . . . . . . . . . . . 12  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  e.  CC )  ->  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) )  =  ( ( ( ( T  +  1 ) ^
2 )  x.  (
( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) ) )
10483, 100, 103syl2anc 693 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) ) )  +  ( ( ( T  +  1 ) ^
2 )  x.  1 ) ) )
10599, 104eqtr4d 2659 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) ) )
106 adddi 10025 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  T  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  ( 2  x.  1 ) ) )
10741, 101, 106mp3an13 1415 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  ( 2  x.  1 ) ) )
108 2t1e2 11176 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  1 )  =  2
109108oveq2i 6661 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  T )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  T )  +  2 )
110107, 109syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
2  x.  ( T  +  1 ) )  =  ( ( 2  x.  T )  +  2 ) )
111110oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( 2  x.  ( T  +  1 ) )  -  1 )  =  ( ( ( 2  x.  T )  +  2 )  - 
1 ) )
112 mulcl 10020 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  T  e.  CC )  ->  ( 2  x.  T
)  e.  CC )
11341, 112mpan 706 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
2  x.  T )  e.  CC )
114 addsubass 10291 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  T
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
11541, 101, 114mp3an23 1416 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  T )  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
116113, 115syl 17 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  ( 2  -  1 ) ) )
117 2m1e1 11135 . . . . . . . . . . . . . . . 16  |-  ( 2  -  1 )  =  1
118117oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  T )  +  ( 2  -  1 ) )  =  ( ( 2  x.  T )  +  1 )
119116, 118syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( ( 2  x.  T )  +  2 )  -  1 )  =  ( ( 2  x.  T )  +  1 ) )
120111, 119eqtrd 2656 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( 2  x.  ( T  +  1 ) )  -  1 )  =  ( ( 2  x.  T )  +  1 ) )
121120oveq2d 6666 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  -  ( ( 2  x.  T )  +  1 ) ) )
122 subsub 10311 . . . . . . . . . . . . . 14  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( 2  x.  ( T  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( T  +  1 ) ^
2 )  -  (
( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )
123101, 122mp3an3 1413 . . . . . . . . . . . . 13  |-  ( ( ( ( T  + 
1 ) ^ 2 )  e.  CC  /\  ( 2  x.  ( T  +  1 ) )  e.  CC )  ->  ( ( ( T  +  1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 ) )
12483, 96, 123syl2anc 693 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  ( T  +  1 ) )  -  1 ) )  =  ( ( ( ( T  +  1 ) ^ 2 )  -  ( 2  x.  ( T  +  1 ) ) )  +  1 ) )
125 sqcl 12925 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  ( T ^ 2 )  e.  CC )
126 peano2cn 10208 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  T )  e.  CC  ->  (
( 2  x.  T
)  +  1 )  e.  CC )
127113, 126syl 17 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( 2  x.  T
)  +  1 )  e.  CC )
128 binom21 12980 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( ( T ^ 2 )  +  ( 2  x.  T ) )  +  1 ) )
129 addass 10023 . . . . . . . . . . . . . . . 16  |-  ( ( ( T ^ 2 )  e.  CC  /\  ( 2  x.  T
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( T ^ 2 )  +  ( 2  x.  T
) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
130101, 129mp3an3 1413 . . . . . . . . . . . . . . 15  |-  ( ( ( T ^ 2 )  e.  CC  /\  ( 2  x.  T
)  e.  CC )  ->  ( ( ( T ^ 2 )  +  ( 2  x.  T ) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
131125, 113, 130syl2anc 693 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( ( T ^
2 )  +  ( 2  x.  T ) )  +  1 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
132128, 131eqtrd 2656 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( T  +  1 ) ^ 2 )  =  ( ( T ^ 2 )  +  ( ( 2  x.  T )  +  1 ) ) )
133125, 127, 132mvrraddd 10445 . . . . . . . . . . . 12  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  -  ( ( 2  x.  T )  +  1 ) )  =  ( T ^
2 ) )
134121, 124, 1333eqtr3d 2664 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
2 )  -  (
2  x.  ( T  +  1 ) ) )  +  1 )  =  ( T ^
2 ) )
135134oveq2d 6666 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( ( ( ( T  + 
1 ) ^ 2 )  -  ( 2  x.  ( T  + 
1 ) ) )  +  1 ) )  =  ( ( ( T  +  1 ) ^ 2 )  x.  ( T ^ 2 ) ) )
13683, 125mulcomd 10061 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( ( T  + 
1 ) ^ 2 )  x.  ( T ^ 2 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
137105, 135, 1363eqtrd 2660 . . . . . . . . 9  |-  ( T  e.  CC  ->  (
( ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) )  -  (
2  x.  ( ( ( T  +  1 ) ^ 2 )  x.  ( ( T  +  1 ) ^
1 ) ) ) )  +  ( ( ( T  +  1 ) ^ 2 )  x.  1 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
13886, 137eqtrd 2656 . . . . . . . 8  |-  ( T  e.  CC  ->  (
( ( ( T  +  1 ) ^
( 2  +  2 ) )  -  (
2  x.  ( ( T  +  1 ) ^ ( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
1399, 138syl 17 . . . . . . 7  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ (
2  +  2 ) )  -  ( 2  x.  ( ( T  +  1 ) ^
( 2  +  1 ) ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) ) )
14073, 139syl5eq 2668 . . . . . 6  |-  ( T  e.  NN0  ->  ( ( ( ( T  + 
1 ) ^ 4 )  -  ( 2  x.  ( ( T  +  1 ) ^
3 ) ) )  +  ( ( T  +  1 ) ^
2 ) )  =  ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) ) )
14165, 140eqtrd 2656 . . . . 5  |-  ( T  e.  NN0  ->  ( ( ( ( ( ( T  +  1 ) ^ 4 )  -  ( 2  x.  (
( T  +  1 ) ^ 3 ) ) )  +  ( ( T  +  1 ) ^ 2 ) )  -  ( 1  / ; 3 0 ) )  +  ( 1  / ; 3 0 ) )  =  ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) ) )
14237, 62, 1413eqtrd 2660 . . . 4  |-  ( T  e.  NN0  ->  ( ( 4 BernPoly  ( T  + 
1 ) )  -  ( 4 BernPoly  0 ) )  =  ( ( T ^ 2 )  x.  ( ( T  + 
1 ) ^ 2 ) ) )
143142oveq1d 6665 . . 3  |-  ( T  e.  NN0  ->  ( ( ( 4 BernPoly  ( T  +  1 ) )  -  ( 4 BernPoly  0
) )  /  4
)  =  ( ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  /  4 ) )
1448, 143syl5eqr 2670 . 2  |-  ( T  e.  NN0  ->  ( ( ( ( 3  +  1 ) BernPoly  ( T  +  1 ) )  -  ( ( 3  +  1 ) BernPoly  0
) )  /  (
3  +  1 ) )  =  ( ( ( T ^ 2 )  x.  ( ( T  +  1 ) ^ 2 ) )  /  4 ) )
1453, 144eqtrd 2656 1  |-  ( T  e.  NN0  ->  sum_ k  e.  ( 0 ... T
) ( k ^
3 )  =  ( ( ( T ^
2 )  x.  (
( T  +  1 ) ^ 2 ) )  /  4 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   NN0cn0 11292  ;cdc 11493   ...cfz 12326   ^cexp 12860   sum_csu 14416   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-bpoly 14778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator