MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Visualization version   Unicode version

Theorem plyrem 24060
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15260). If a polynomial  F is divided by the linear factor  x  -  A, the remainder is equal to  F ( A ), the evaluation of the polynomial at  A (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
plyrem.2  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
Assertion
Ref Expression
plyrem  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 23956 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
2 simpl 473 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  S )
)
31, 2sseldi 3601 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  CC )
)
4 plyrem.1 . . . . . . . . . 10  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
54plyremlem 24059 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
65adantl 482 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
76simp1d 1073 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  e.  (Poly `  CC )
)
86simp2d 1074 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =  1 )
9 ax-1ne0 10005 . . . . . . . . . 10  |-  1  =/=  0
109a1i 11 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  1  =/=  0 )
118, 10eqnetrd 2861 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =/=  0
)
12 fveq2 6191 . . . . . . . . . 10  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
13 dgr0 24018 . . . . . . . . . 10  |-  (deg ` 
0p )  =  0
1412, 13syl6eq 2672 . . . . . . . . 9  |-  ( G  =  0p  -> 
(deg `  G )  =  0 )
1514necon3i 2826 . . . . . . . 8  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0p )
1611, 15syl 17 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  =/=  0p )
17 plyrem.2 . . . . . . . 8  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
1817quotdgr 24058 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
193, 7, 16, 18syl3anc 1326 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
20 0lt1 10550 . . . . . . . 8  |-  0  <  1
2120, 8syl5breqr 4691 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  0  <  (deg `  G )
)
22 fveq2 6191 . . . . . . . . 9  |-  ( R  =  0p  -> 
(deg `  R )  =  (deg `  0p
) )
2322, 13syl6eq 2672 . . . . . . . 8  |-  ( R  =  0p  -> 
(deg `  R )  =  0 )
2423breq1d 4663 . . . . . . 7  |-  ( R  =  0p  -> 
( (deg `  R
)  <  (deg `  G
)  <->  0  <  (deg `  G ) ) )
2521, 24syl5ibrcom 237 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0p 
->  (deg `  R )  <  (deg `  G )
) )
26 pm2.62 425 . . . . . 6  |-  ( ( R  =  0p  \/  (deg `  R
)  <  (deg `  G
) )  ->  (
( R  =  0p  ->  (deg `  R
)  <  (deg `  G
) )  ->  (deg `  R )  <  (deg `  G ) ) )
2719, 25, 26sylc 65 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  (deg `  G ) )
2827, 8breqtrd 4679 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  1
)
29 quotcl2 24057 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
303, 7, 16, 29syl3anc 1326 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  e.  (Poly `  CC ) )
31 plymulcl 23977 . . . . . . . . 9  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  oF  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
327, 30, 31syl2anc 693 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
33 plysubcl 23978 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )
)  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
343, 32, 33syl2anc 693 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
3517, 34syl5eqel 2705 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  e.  (Poly `  CC )
)
36 dgrcl 23989 . . . . . 6  |-  ( R  e.  (Poly `  CC )  ->  (deg `  R
)  e.  NN0 )
3735, 36syl 17 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  e.  NN0 )
38 nn0lt10b 11439 . . . . 5  |-  ( (deg
`  R )  e. 
NN0  ->  ( (deg `  R )  <  1  <->  (deg
`  R )  =  0 ) )
3937, 38syl 17 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  <  1  <->  (deg `  R )  =  0 ) )
4028, 39mpbid 222 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  =  0 )
41 0dgrb 24002 . . . 4  |-  ( R  e.  (Poly `  CC )  ->  ( (deg `  R )  =  0  <-> 
R  =  ( CC 
X.  { ( R `
 0 ) } ) ) )
4235, 41syl 17 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  =  0  <->  R  =  ( CC  X.  { ( R `  0 ) } ) ) )
4340, 42mpbid 222 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( R ` 
0 ) } ) )
4443fveq1d 6193 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( CC 
X.  { ( R `
 0 ) } ) `  A ) )
4517fveq1i 6192 . . . . . . 7  |-  ( R `
 A )  =  ( ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `
 A )
46 plyf 23954 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
4746adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F : CC --> CC )
48 ffn 6045 . . . . . . . . . 10  |-  ( F : CC --> CC  ->  F  Fn  CC )
4947, 48syl 17 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  Fn  CC )
50 plyf 23954 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
517, 50syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G : CC --> CC )
52 ffn 6045 . . . . . . . . . . 11  |-  ( G : CC --> CC  ->  G  Fn  CC )
5351, 52syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  Fn  CC )
54 plyf 23954 . . . . . . . . . . . 12  |-  ( ( F quot  G )  e.  (Poly `  CC )  ->  ( F quot  G ) : CC --> CC )
5530, 54syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G ) : CC --> CC )
56 ffn 6045 . . . . . . . . . . 11  |-  ( ( F quot  G ) : CC --> CC  ->  ( F quot  G )  Fn  CC )
5755, 56syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  Fn  CC )
58 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
5958a1i 11 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  CC  e.  _V )
60 inidm 3822 . . . . . . . . . 10  |-  ( CC 
i^i  CC )  =  CC
6153, 57, 59, 59, 60offn 6908 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  oF  x.  ( F quot  G ) )  Fn  CC )
62 eqidd 2623 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  ( F `  A )  =  ( F `  A ) )
636simp3d 1075 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  =  { A } )
64 ssun1 3776 . . . . . . . . . . . . . . 15  |-  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) )
6563, 64syl6eqssr 3656 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
66 snssg 4327 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6766adantl 482 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6865, 67mpbird 247 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
69 ofmulrt 24037 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  G : CC --> CC  /\  ( F quot  G ) : CC --> CC )  -> 
( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
7059, 51, 55, 69syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' ( G  oF  x.  ( F quot  G ) ) " {
0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
7168, 70eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } ) )
72 fniniseg 6338 . . . . . . . . . . . . 13  |-  ( ( G  oF  x.  ( F quot  G ) )  Fn  CC  ->  ( A  e.  ( `' ( G  oF  x.  ( F quot  G
) ) " {
0 } )  <->  ( A  e.  CC  /\  ( ( G  oF  x.  ( F quot  G ) ) `  A )  =  0 ) ) )
7361, 72syl 17 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } )  <->  ( A  e.  CC  /\  ( ( G  oF  x.  ( F quot  G ) ) `  A )  =  0 ) ) )
7471, 73mpbid 222 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  CC  /\  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 ) )
7574simprd 479 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 )
7675adantr 481 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 )
7749, 61, 59, 59, 60, 62, 76ofval 6906 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7877anabss3 864 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7945, 78syl5eq 2668 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( F `
 A )  - 
0 ) )
8046ffvelrnda 6359 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  e.  CC )
8180subid1d 10381 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F `  A
)  -  0 )  =  ( F `  A ) )
8279, 81eqtrd 2656 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( F `  A ) )
83 fvex 6201 . . . . . . 7  |-  ( R `
 0 )  e. 
_V
8483fvconst2 6469 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8584adantl 482 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8644, 82, 853eqtr3d 2664 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  =  ( R ` 
0 ) )
8786sneqd 4189 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { ( F `  A ) }  =  { ( R `  0 ) } )
8887xpeq2d 5139 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { ( R `
 0 ) } ) )
8943, 88eqtr4d 2659 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    - cmin 10266   NN0cn0 11292   0pc0p 23436  Polycply 23940   Xpcidp 23941  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  facth  24061
  Copyright terms: Public domain W3C validator