MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthg Structured version   Visualization version   Unicode version

Theorem pockthg 15610
Description: The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthg.5  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
Assertion
Ref Expression
pockthg  |-  ( ph  ->  N  e.  Prime )
Distinct variable groups:    x, p, N    A, p, x    ph, p, x
Allowed substitution hints:    B( x, p)

Proof of Theorem pockthg
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
2 pockthg.1 . . . . . . 7  |-  ( ph  ->  A  e.  NN )
3 pockthg.2 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
42, 3nnmulcld 11068 . . . . . 6  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
5 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
64, 5syl6eleq 2711 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
7 eluzp1p1 11713 . . . . 5  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
86, 7syl 17 . . . 4  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
9 df-2 11079 . . . . 5  |-  2  =  ( 1  +  1 )
109fveq2i 6194 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
118, 10syl6eleqr 2712 . . 3  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= ` 
2 ) )
121, 11eqeltrd 2701 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
13 eluzelre 11698 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
1412, 13syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
1514adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  RR )
162nnred 11035 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1716resqcld 13035 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
1817adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  e.  RR )
19 prmnn 15388 . . . . . . . . . 10  |-  ( q  e.  Prime  ->  q  e.  NN )
2019ad2antrl 764 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN )
2120nnred 11035 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  RR )
2221resqcld 13035 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  RR )
23 pockthg.3 . . . . . . . . . . 11  |-  ( ph  ->  B  <  A )
243nnred 11035 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
252nngt0d 11064 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
26 ltmul2 10874 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2724, 16, 16, 25, 26syl112anc 1330 . . . . . . . . . . 11  |-  ( ph  ->  ( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2823, 27mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  <  ( A  x.  A ) )
292, 2nnmulcld 11068 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  A
)  e.  NN )
30 nnltp1le 11433 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  NN  /\  ( A  x.  A
)  e.  NN )  ->  ( ( A  x.  B )  < 
( A  x.  A
)  <->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A )
) )
314, 29, 30syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  B )  <  ( A  x.  A )  <->  ( ( A  x.  B
)  +  1 )  <_  ( A  x.  A ) ) )
3228, 31mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A ) )
332nncnd 11036 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
3433sqvald 13005 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3532, 1, 343brtr4d 4685 . . . . . . . 8  |-  ( ph  ->  N  <_  ( A ^ 2 ) )
3635adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <_  ( A ^
2 ) )
37 pockthg.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
3837adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
39 prmnn 15388 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  Prime  ->  p  e.  NN )
4039ad2antrl 764 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  NN )
4140nncnd 11036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  CC )
4241exp1d 13003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  =  p )
43 nnge1 11046 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  pCnt  A )  e.  NN  ->  1  <_  ( p  pCnt  A )
)
4443ad2antll 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  <_  ( p  pCnt  A )
)
45 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  Prime )
462nnzd 11481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  ZZ )
4746ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  A  e.  ZZ )
48 1nn0 11308 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  NN0
4948a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  e.  NN0 )
50 pcdvdsb 15573 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  1  e. 
NN0 )  ->  (
1  <_  ( p  pCnt  A )  <->  ( p ^ 1 )  ||  A ) )
5145, 47, 49, 50syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( 1  <_  ( p  pCnt  A )  <->  ( p ^
1 )  ||  A
) )
5244, 51mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  ||  A )
5342, 52eqbrtrrd 4677 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  ||  A
)
54 simpl1 1064 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  ph )
5554, 2syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  A  e.  NN )
5654, 3syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  e.  NN )
5754, 23syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  <  A )
5854, 1syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  N  =  ( ( A  x.  B )  +  1 ) )
59 simpl2l 1114 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  e.  Prime )
60 simpl2r 1115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  ||  N )
61 simpl3l 1116 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  p  e.  Prime )
62 simpl3r 1117 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  e.  NN )
63 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  x  e.  ZZ )
64 simprrl 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( x ^
( N  -  1 ) )  mod  N
)  =  1 )
65 simprrr 805 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 15609 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) )
6766rexlimdvaa 3032 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  -> 
( E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( x ^ (
( N  -  1 )  /  p ) )  -  1 )  gcd  N )  =  1 )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
68673expa 1265 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )  ->  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
6953, 68embantd 59 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( (
p  ||  A  ->  E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 ) )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( q  -  1 ) ) ) )
7069expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  ->  ( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
71 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e. 
Prime )
72 prmuz2 15408 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  2 )
)
73 uz2m1nn 11763 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  ( ZZ>= `  2
)  ->  ( q  -  1 )  e.  NN )
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  Prime  ->  ( q  -  1 )  e.  NN )
7574ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  NN )
76 pccl 15554 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  (
q  -  1 )  e.  NN )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7771, 75, 76syl2anr 495 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7877nn0ge0d 11354 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  ( q  -  1 ) ) )
79 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( ( p  pCnt  A )  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) )  <->  0  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8078, 79syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8180a1dd 50 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
82 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
832ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  A  e.  NN )
8482, 83pccld 15555 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
85 elnn0 11294 . . . . . . . . . . . . . . 15  |-  ( ( p  pCnt  A )  e.  NN0  <->  ( ( p 
pCnt  A )  e.  NN  \/  ( p  pCnt  A
)  =  0 ) )
8684, 85sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  \/  ( p  pCnt  A )  =  0 ) )
8770, 81, 86mpjaod 396 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
8887ralimdva 2962 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A. p  e. 
Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8938, 88mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) )
9046adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  ZZ )
9175nnzd 11481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  ZZ )
92 pc2dvds 15583 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  ZZ )  ->  ( A  ||  ( q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9390, 91, 92syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9489, 93mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  ||  ( q  - 
1 ) )
95 dvdsle 15032 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  NN )  ->  ( A  ||  ( q  -  1 )  ->  A  <_  ( q  -  1 ) ) )
9690, 75, 95syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  ->  A  <_  (
q  -  1 ) ) )
9794, 96mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <_  ( q  - 
1 ) )
982nnnn0d 11351 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  NN0 )
9998adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  NN0 )
10020nnnn0d 11351 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN0 )
101 nn0ltlem1 11437 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  q  e.  NN0 )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10299, 100, 101syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10397, 102mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <  q )
10416adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  RR )
10598nn0ge0d 11354 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
106105adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  A )
107100nn0ge0d 11354 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  q )
108104, 21, 106, 107lt2sqd 13043 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  ( A ^ 2 )  <  ( q ^
2 ) ) )
109103, 108mpbid 222 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  <  ( q ^ 2 ) )
11015, 18, 22, 36, 109lelttrd 10195 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <  ( q ^
2 ) )
11115, 22ltnled 10184 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( N  <  (
q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N )
)
112110, 111mpbid 222 . . . . 5  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  -.  ( q ^ 2 )  <_  N )
113112expr 643 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  ||  N  ->  -.  (
q ^ 2 )  <_  N ) )
114113con2d 129 . . 3  |-  ( (
ph  /\  q  e.  Prime )  ->  ( (
q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
115114ralrimiva 2966 . 2  |-  ( ph  ->  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
116 isprm5 15419 . 2  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) ) )
11712, 115, 116sylanbrc 698 1  |-  ( ph  ->  N  e.  Prime )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    mod cmo 12668   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542
This theorem is referenced by:  pockthi  15611  proththd  41531
  Copyright terms: Public domain W3C validator