![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version Unicode version |
Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
1259prm.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
1259prm |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 37prm 15828 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | 3nn0 11310 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 4nn 11187 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | decnncl 11518 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 1259prm.1 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1nn0 11308 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
7 | 2nn0 11309 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
8 | 6, 7 | deccl 11512 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() |
9 | 5nn0 11312 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
10 | 8, 9 | deccl 11512 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8nn0 11315 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
12 | eqid 2622 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 8p1e9 11158 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 10, 11, 6, 12, 13 | decaddi 11579 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 5, 14 | eqtr4i 2647 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | oveq1i 6660 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 10, 11 | deccl 11512 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | nn0cni 11304 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | ax-1cn 9994 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 18, 19 | pncan3oi 10297 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 16, 20 | eqtri 2644 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 4nn0 11311 |
. . . . 5
![]() ![]() ![]() ![]() | |
23 | 2, 22 | deccl 11512 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
24 | 7nn0 11314 |
. . . 4
![]() ![]() ![]() ![]() | |
25 | eqid 2622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 7, 2 | deccl 11512 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
27 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
28 | eqid 2622 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 3t3e9 11180 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 2p1e3 11151 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | oveq12i 6662 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 9p3e12 11621 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 31, 32 | eqtri 2644 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 4t3e12 11632 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 3cn 11095 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
36 | 2cn 11091 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
37 | 3p2e5 11160 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | 35, 36, 37 | addcomli 10228 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 6, 7, 2, 34, 38 | decaddi 11579 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 2, 22, 7, 2, 27, 28, 2, 9, 6, 33, 39 | decmac 11566 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 7cn 11104 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
42 | 7t3e21 11649 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
43 | 41, 35, 42 | mulcomli 10047 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 1p2e3 11152 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
45 | 7, 6, 7, 43, 44 | decaddi 11579 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 4cn 11098 |
. . . . . 6
![]() ![]() ![]() ![]() | |
47 | 7t4e28 11650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
48 | 41, 46, 47 | mulcomli 10047 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 24, 2, 22, 27, 11, 7, 45, 48 | decmul1c 11587 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 23, 2, 24, 25, 11, 26, 40, 49 | decmul2c 11589 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 21, 50 | eqtr4i 2647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 9nn0 11316 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
53 | 10, 52 | deccl 11512 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 5, 53 | eqeltri 2697 |
. . . . 5
![]() ![]() ![]() ![]() |
55 | 54 | nn0cni 11304 |
. . . 4
![]() ![]() ![]() ![]() |
56 | npcan 10290 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
57 | 55, 19, 56 | mp2an 708 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 57 | eqcomi 2631 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | 1nn 11031 |
. 2
![]() ![]() ![]() ![]() | |
60 | 2nn 11185 |
. 2
![]() ![]() ![]() ![]() | |
61 | 2, 24 | deccl 11512 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
62 | 61 | numexp1 15781 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
63 | 62 | oveq2i 6661 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
64 | 51, 63 | eqtr4i 2647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 7nn 11190 |
. . . 4
![]() ![]() ![]() ![]() | |
66 | 4lt7 11211 |
. . . 4
![]() ![]() ![]() ![]() | |
67 | 2, 22, 65, 66 | declt 11530 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
68 | 67, 62 | breqtrri 4680 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
69 | 5 | 1259lem4 15841 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
70 | 5 | 1259lem5 15842 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
71 | 1, 4, 51, 58, 4, 59, 60, 64, 68, 69, 70 | pockthi 15611 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-odz 15470 df-phi 15471 df-pc 15542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |