MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppinprm Structured version   Visualization version   Unicode version

Theorem ppinprm 24878
Description: The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppinprm  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )

Proof of Theorem ppinprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . . . . . . . . 11  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  Prime
2 simprr 796 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
31, 2sseldi 3601 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  Prime )
4 simprl 794 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  ( A  +  1
)  e.  Prime )
5 nelne2 2891 . . . . . . . . . 10  |-  ( ( x  e.  Prime  /\  -.  ( A  +  1
)  e.  Prime )  ->  x  =/=  ( A  +  1 ) )
63, 4, 5syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  =/=  ( A  +  1 ) )
7 velsn 4193 . . . . . . . . . 10  |-  ( x  e.  { ( A  +  1 ) }  <-> 
x  =  ( A  +  1 ) )
87necon3bbii 2841 . . . . . . . . 9  |-  ( -.  x  e.  { ( A  +  1 ) }  <->  x  =/=  ( A  +  1 ) )
96, 8sylibr 224 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  -.  x  e.  { ( A  +  1 ) } )
10 inss1 3833 . . . . . . . . . . . 12  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  (
2 ... ( A  + 
1 ) )
1110, 2sseldi 3601 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... ( A  +  1 ) ) )
12 2z 11409 . . . . . . . . . . . 12  |-  2  e.  ZZ
13 zcn 11382 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  A  e.  CC )
1413adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  CC )
15 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
16 pncan 10287 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
1714, 15, 16sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  =  A )
18 elfzuz2 12346 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 2 ... ( A  +  1 ) )  ->  ( A  +  1 )  e.  ( ZZ>= `  2
) )
19 uz2m1nn 11763 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  ( ZZ>= `  2
)  ->  ( ( A  +  1 )  -  1 )  e.  NN )
2011, 18, 193syl 18 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
( A  +  1 )  -  1 )  e.  NN )
2117, 20eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  NN )
22 nnuz 11723 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
23 2m1e1 11135 . . . . . . . . . . . . . . 15  |-  ( 2  -  1 )  =  1
2423fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( 2  -  1 ) )  =  (
ZZ>= `  1 )
2522, 24eqtr4i 2647 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  ( 2  -  1 ) )
2621, 25syl6eleq 2711 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )
27 fzsuc2 12398 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )  -> 
( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
2812, 26, 27sylancr 695 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
2 ... ( A  + 
1 ) )  =  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
2911, 28eleqtrd 2703 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  u.  {
( A  +  1 ) } ) )
30 elun 3753 . . . . . . . . . 10  |-  ( x  e.  ( ( 2 ... A )  u. 
{ ( A  + 
1 ) } )  <-> 
( x  e.  ( 2 ... A )  \/  x  e.  {
( A  +  1 ) } ) )
3129, 30sylib 208 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  (
x  e.  ( 2 ... A )  \/  x  e.  { ( A  +  1 ) } ) )
3231ord 392 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  ( -.  x  e.  (
2 ... A )  ->  x  e.  { ( A  +  1 ) } ) )
339, 32mt3d 140 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( 2 ... A
) )
3433, 3elind 3798 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( -.  ( A  +  1 )  e. 
Prime  /\  x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
) )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) )
3534expr 643 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( x  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  ->  x  e.  ( ( 2 ... A )  i^i  Prime ) ) )
3635ssrdv 3609 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) 
C_  ( ( 2 ... A )  i^i 
Prime ) )
37 uzid 11702 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3837adantr 481 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  A  e.  ( ZZ>= `  A ) )
39 peano2uz 11741 . . . . 5  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
40 fzss2 12381 . . . . 5  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( 2 ... A )  C_  ( 2 ... ( A  +  1 ) ) )
41 ssrin 3838 . . . . 5  |-  ( ( 2 ... A ) 
C_  ( 2 ... ( A  +  1 ) )  ->  (
( 2 ... A
)  i^i  Prime )  C_  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
4238, 39, 40, 414syl 19 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... A )  i^i  Prime ) 
C_  ( ( 2 ... ( A  + 
1 ) )  i^i 
Prime ) )
4336, 42eqssd 3620 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... A )  i^i 
Prime ) )
4443fveq2d 6195 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  =  ( # `  ( ( 2 ... A )  i^i  Prime ) ) )
45 peano2z 11418 . . . 4  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
4645adantr 481 . . 3  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  ( A  +  1 )  e.  ZZ )
47 ppival2 24854 . . 3  |-  ( ( A  +  1 )  e.  ZZ  ->  (π `  ( A  +  1 ) )  =  (
# `  ( (
2 ... ( A  + 
1 ) )  i^i 
Prime ) ) )
4846, 47syl 17 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
) )
49 ppival2 24854 . . 3  |-  ( A  e.  ZZ  ->  (π `  A )  =  (
# `  ( (
2 ... A )  i^i 
Prime ) ) )
5049adantr 481 . 2  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  A )  =  ( # `  (
( 2 ... A
)  i^i  Prime ) ) )
5144, 48, 503eqtr4d 2666 1  |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  (π `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117   Primecprime 15385  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-ppi 24826
This theorem is referenced by:  ppip1le  24887  ppi2i  24895  bposlem5  25013
  Copyright terms: Public domain W3C validator