MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   Unicode version

Theorem ppiprm 24877
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( (π `  A )  +  1 ) )

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 12772 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... A
)  e.  Fin )
2 inss1 3833 . . . 4  |-  ( ( 2 ... A )  i^i  Prime )  C_  (
2 ... A )
3 ssfi 8180 . . . 4  |-  ( ( ( 2 ... A
)  e.  Fin  /\  ( ( 2 ... A )  i^i  Prime ) 
C_  ( 2 ... A ) )  -> 
( ( 2 ... A )  i^i  Prime )  e.  Fin )
41, 2, 3sylancl 694 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... A )  i^i  Prime )  e.  Fin )
5 zre 11381 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
65adantr 481 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  RR )
76ltp1d 10954 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  <  ( A  +  1 ) )
8 peano2z 11418 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
98adantr 481 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  ZZ )
109zred 11482 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  RR )
116, 10ltnled 10184 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  <  ( A  +  1 )  <->  -.  ( A  +  1 )  <_  A )
)
127, 11mpbid 222 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  -.  ( A  + 
1 )  <_  A
)
132sseli 3599 . . . . 5  |-  ( ( A  +  1 )  e.  ( ( 2 ... A )  i^i 
Prime )  ->  ( A  +  1 )  e.  ( 2 ... A
) )
14 elfzle2 12345 . . . . 5  |-  ( ( A  +  1 )  e.  ( 2 ... A )  ->  ( A  +  1 )  <_  A )
1513, 14syl 17 . . . 4  |-  ( ( A  +  1 )  e.  ( ( 2 ... A )  i^i 
Prime )  ->  ( A  +  1 )  <_  A )
1612, 15nsyl 135 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  -.  ( A  + 
1 )  e.  ( ( 2 ... A
)  i^i  Prime ) )
17 ovex 6678 . . . 4  |-  ( A  +  1 )  e. 
_V
18 hashunsng 13181 . . . 4  |-  ( ( A  +  1 )  e.  _V  ->  (
( ( ( 2 ... A )  i^i 
Prime )  e.  Fin  /\ 
-.  ( A  + 
1 )  e.  ( ( 2 ... A
)  i^i  Prime ) )  ->  ( # `  (
( ( 2 ... A )  i^i  Prime )  u.  { ( A  +  1 ) } ) )  =  ( ( # `  (
( 2 ... A
)  i^i  Prime ) )  +  1 ) ) )
1917, 18ax-mp 5 . . 3  |-  ( ( ( ( 2 ... A )  i^i  Prime )  e.  Fin  /\  -.  ( A  +  1
)  e.  ( ( 2 ... A )  i^i  Prime ) )  -> 
( # `  ( ( ( 2 ... A
)  i^i  Prime )  u. 
{ ( A  + 
1 ) } ) )  =  ( (
# `  ( (
2 ... A )  i^i 
Prime ) )  +  1 ) )
204, 16, 19syl2anc 693 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( # `  (
( ( 2 ... A )  i^i  Prime )  u.  { ( A  +  1 ) } ) )  =  ( ( # `  (
( 2 ... A
)  i^i  Prime ) )  +  1 ) )
21 ppival2 24854 . . . 4  |-  ( ( A  +  1 )  e.  ZZ  ->  (π `  ( A  +  1 ) )  =  (
# `  ( (
2 ... ( A  + 
1 ) )  i^i 
Prime ) ) )
229, 21syl 17 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
) )
23 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
24 zcn 11382 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
2524adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  CC )
26 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
27 pncan 10287 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
2825, 26, 27sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( A  + 
1 )  -  1 )  =  A )
29 prmuz2 15408 . . . . . . . . . . . 12  |-  ( ( A  +  1 )  e.  Prime  ->  ( A  +  1 )  e.  ( ZZ>= `  2 )
)
3029adantl 482 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  ( ZZ>= ` 
2 ) )
31 uz2m1nn 11763 . . . . . . . . . . 11  |-  ( ( A  +  1 )  e.  ( ZZ>= `  2
)  ->  ( ( A  +  1 )  -  1 )  e.  NN )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( A  + 
1 )  -  1 )  e.  NN )
3328, 32eqeltrrd 2702 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  NN )
34 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
35 2m1e1 11135 . . . . . . . . . . 11  |-  ( 2  -  1 )  =  1
3635fveq2i 6194 . . . . . . . . . 10  |-  ( ZZ>= `  ( 2  -  1 ) )  =  (
ZZ>= `  1 )
3734, 36eqtr4i 2647 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  ( 2  -  1 ) )
3833, 37syl6eleq 2711 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )
39 fzsuc2 12398 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )  -> 
( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
4023, 38, 39sylancr 695 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
4140ineq1d 3813 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  u.  { ( A  +  1 ) } )  i^i  Prime )
)
42 indir 3875 . . . . . 6  |-  ( ( ( 2 ... A
)  u.  { ( A  +  1 ) } )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) )
4341, 42syl6eq 2672 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) ) )
44 simpr 477 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  Prime )
4544snssd 4340 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  { ( A  + 
1 ) }  C_  Prime )
46 df-ss 3588 . . . . . . 7  |-  ( { ( A  +  1 ) }  C_  Prime  <->  ( { ( A  + 
1 ) }  i^i  Prime
)  =  { ( A  +  1 ) } )
4745, 46sylib 208 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( { ( A  +  1 ) }  i^i  Prime )  =  {
( A  +  1 ) } )
4847uneq2d 3767 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( ( 2 ... A )  i^i 
Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  { ( A  +  1 ) } ) )
4943, 48eqtrd 2656 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  {
( A  +  1 ) } ) )
5049fveq2d 6195 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( # `  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  =  ( # `  ( ( ( 2 ... A )  i^i 
Prime )  u.  { ( A  +  1 ) } ) ) )
5122, 50eqtrd 2656 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( # `  (
( ( 2 ... A )  i^i  Prime )  u.  { ( A  +  1 ) } ) ) )
52 ppival2 24854 . . . 4  |-  ( A  e.  ZZ  ->  (π `  A )  =  (
# `  ( (
2 ... A )  i^i 
Prime ) ) )
5352adantr 481 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  (π `  A )  =  ( # `  (
( 2 ... A
)  i^i  Prime ) ) )
5453oveq1d 6665 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( (π `  A )  +  1 )  =  ( ( # `  (
( 2 ... A
)  i^i  Prime ) )  +  1 ) )
5520, 51, 543eqtr4d 2666 1  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  (π `  ( A  + 
1 ) )  =  ( (π `  A )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117   Primecprime 15385  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-ppi 24826
This theorem is referenced by:  ppip1le  24887  ppi1i  24894  bposlem5  25013
  Copyright terms: Public domain W3C validator