MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmo Structured version   Visualization version   Unicode version

Theorem prmdvdsprmo 15746
Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmo  |-  ( N  e.  NN  ->  A. p  e.  Prime  ( p  <_  N  ->  p  ||  (#p `  N ) ) )
Distinct variable group:    N, p

Proof of Theorem prmdvdsprmo
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfi 12771 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
2 diffi 8192 . . . . . . 7  |-  ( ( 1 ... N )  e.  Fin  ->  (
( 1 ... N
)  \  { p } )  e.  Fin )
31, 2mp1i 13 . . . . . 6  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( ( 1 ... N )  \  { p } )  e.  Fin )
4 eldifi 3732 . . . . . . . . 9  |-  ( k  e.  ( ( 1 ... N )  \  { p } )  ->  k  e.  ( 1 ... N ) )
5 elfzelz 12342 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ZZ )
64, 5syl 17 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... N )  \  { p } )  ->  k  e.  ZZ )
7 1zzd 11408 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... N )  \  { p } )  ->  1  e.  ZZ )
86, 7ifcld 4131 . . . . . . 7  |-  ( k  e.  ( ( 1 ... N )  \  { p } )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  ZZ )
98adantl 482 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  p  e. 
Prime )  /\  p  <_  N )  /\  k  e.  ( ( 1 ... N )  \  {
p } ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  ZZ )
103, 9fprodzcl 14684 . . . . 5  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  prod_ k  e.  ( ( 1 ... N
)  \  { p } ) if ( k  e.  Prime ,  k ,  1 )  e.  ZZ )
11 prmz 15389 . . . . . . 7  |-  ( p  e.  Prime  ->  p  e.  ZZ )
1211adantl 482 . . . . . 6  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
1312adantr 481 . . . . 5  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  e.  ZZ )
14 dvdsmul2 15004 . . . . 5  |-  ( (
prod_ k  e.  (
( 1 ... N
)  \  { p } ) if ( k  e.  Prime ,  k ,  1 )  e.  ZZ  /\  p  e.  ZZ )  ->  p  ||  ( prod_ k  e.  ( ( 1 ... N
)  \  { p } ) if ( k  e.  Prime ,  k ,  1 )  x.  p ) )
1510, 13, 14syl2anc 693 . . . 4  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  ||  ( prod_ k  e.  ( ( 1 ... N ) 
\  { p }
) if ( k  e.  Prime ,  k ,  1 )  x.  p
) )
16 nnnn0 11299 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
17 prmoval 15737 . . . . . . . 8  |-  ( N  e.  NN0  ->  (#p `  N
)  =  prod_ k  e.  ( 1 ... N
) if ( k  e.  Prime ,  k ,  1 ) )
1816, 17syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  (#p `  N )  =  prod_ k  e.  ( 1 ... N ) if ( k  e.  Prime ,  k ,  1 ) )
1918ad2antrr 762 . . . . . 6  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  (#p `  N )  = 
prod_ k  e.  (
1 ... N ) if ( k  e.  Prime ,  k ,  1 ) )
2019breq2d 4665 . . . . 5  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( p  ||  (#p
`  N )  <->  p  ||  prod_ k  e.  ( 1 ... N ) if ( k  e.  Prime ,  k ,  1 ) ) )
21 neldifsnd 4322 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  -.  p  e.  ( ( 1 ... N )  \  {
p } ) )
22 disjsn 4246 . . . . . . . . 9  |-  ( ( ( ( 1 ... N )  \  {
p } )  i^i 
{ p } )  =  (/)  <->  -.  p  e.  ( ( 1 ... N )  \  {
p } ) )
2321, 22sylibr 224 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( ( ( 1 ... N ) 
\  { p }
)  i^i  { p } )  =  (/) )
24 prmnn 15388 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  p  e.  NN )
2524adantl 482 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
2625anim1i 592 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( p  e.  NN  /\  p  <_  N ) )
27 nnz 11399 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 fznn 12408 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
p  e.  ( 1 ... N )  <->  ( p  e.  NN  /\  p  <_  N ) ) )
2927, 28syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
p  e.  ( 1 ... N )  <->  ( p  e.  NN  /\  p  <_  N ) ) )
3029ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( p  e.  ( 1 ... N
)  <->  ( p  e.  NN  /\  p  <_  N ) ) )
3126, 30mpbird 247 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  e.  ( 1 ... N ) )
32 difsnid 4341 . . . . . . . . . 10  |-  ( p  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  \  {
p } )  u. 
{ p } )  =  ( 1 ... N ) )
3332eqcomd 2628 . . . . . . . . 9  |-  ( p  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( ( 1 ... N )  \  { p } )  u.  { p }
) )
3431, 33syl 17 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( 1 ... N )  =  ( ( ( 1 ... N )  \  {
p } )  u. 
{ p } ) )
35 fzfid 12772 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( 1 ... N )  e.  Fin )
36 1zzd 11408 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  1  e.  ZZ )
375, 36ifcld 4131 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  ZZ )
3837zcnd 11483 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  CC )
3938adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  p  e. 
Prime )  /\  p  <_  N )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  CC )
4023, 34, 35, 39fprodsplit 14696 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  prod_ k  e.  ( 1 ... N ) if ( k  e. 
Prime ,  k , 
1 )  =  (
prod_ k  e.  (
( 1 ... N
)  \  { p } ) if ( k  e.  Prime ,  k ,  1 )  x. 
prod_ k  e.  { p } if ( k  e. 
Prime ,  k , 
1 ) ) )
41 simplr 792 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  e.  Prime )
4225adantr 481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  e.  NN )
4342nncnd 11036 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  e.  CC )
44 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  1  e.  CC )
4543, 44ifcld 4131 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  if ( p  e.  Prime ,  p ,  1 )  e.  CC )
46 eleq1 2689 . . . . . . . . . . . 12  |-  ( k  =  p  ->  (
k  e.  Prime  <->  p  e.  Prime ) )
47 id 22 . . . . . . . . . . . 12  |-  ( k  =  p  ->  k  =  p )
4846, 47ifbieq1d 4109 . . . . . . . . . . 11  |-  ( k  =  p  ->  if ( k  e.  Prime ,  k ,  1 )  =  if ( p  e.  Prime ,  p ,  1 ) )
4948prodsn 14692 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  if ( p  e.  Prime ,  p ,  1 )  e.  CC )  ->  prod_ k  e.  { p } if ( k  e. 
Prime ,  k , 
1 )  =  if ( p  e.  Prime ,  p ,  1 ) )
5041, 45, 49syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  prod_ k  e.  {
p } if ( k  e.  Prime ,  k ,  1 )  =  if ( p  e. 
Prime ,  p , 
1 ) )
51 simpr 477 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  p  e.  Prime )
5251iftrued 4094 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  if ( p  e.  Prime ,  p ,  1 )  =  p )
5352adantr 481 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  if ( p  e.  Prime ,  p ,  1 )  =  p )
5450, 53eqtrd 2656 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  prod_ k  e.  {
p } if ( k  e.  Prime ,  k ,  1 )  =  p )
5554oveq2d 6666 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( prod_ k  e.  ( ( 1 ... N )  \  {
p } ) if ( k  e.  Prime ,  k ,  1 )  x.  prod_ k  e.  {
p } if ( k  e.  Prime ,  k ,  1 ) )  =  ( prod_ k  e.  ( ( 1 ... N )  \  {
p } ) if ( k  e.  Prime ,  k ,  1 )  x.  p ) )
5640, 55eqtrd 2656 . . . . . 6  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  prod_ k  e.  ( 1 ... N ) if ( k  e. 
Prime ,  k , 
1 )  =  (
prod_ k  e.  (
( 1 ... N
)  \  { p } ) if ( k  e.  Prime ,  k ,  1 )  x.  p ) )
5756breq2d 4665 . . . . 5  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( p  ||  prod_ k  e.  ( 1 ... N ) if ( k  e.  Prime ,  k ,  1 )  <-> 
p  ||  ( prod_ k  e.  ( ( 1 ... N )  \  { p } ) if ( k  e. 
Prime ,  k , 
1 )  x.  p
) ) )
5820, 57bitrd 268 . . . 4  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  ( p  ||  (#p
`  N )  <->  p  ||  ( prod_ k  e.  ( ( 1 ... N ) 
\  { p }
) if ( k  e.  Prime ,  k ,  1 )  x.  p
) ) )
5915, 58mpbird 247 . . 3  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  N )  ->  p  ||  (#p `  N ) )
6059ex 450 . 2  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  <_  N  ->  p  ||  (#p `  N
) ) )
6160ralrimiva 2966 1  |-  ( N  e.  NN  ->  A. p  e.  Prime  ( p  <_  N  ->  p  ||  (#p `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   prod_cprod 14635    || cdvds 14983   Primecprime 15385  #pcprmo 15735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-prm 15386  df-prmo 15736
This theorem is referenced by:  prmdvdsprmop  15747
  Copyright terms: Public domain W3C validator