MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   Unicode version

Theorem dvcnvrelem2 23781
Description: Lemma for dvcnvre 23782. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f  |-  ( ph  ->  F  e.  ( X
-cn-> RR ) )
dvcnvre.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  X )
dvcnvre.z  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
dvcnvre.1  |-  ( ph  ->  F : X -1-1-onto-> Y )
dvcnvre.c  |-  ( ph  ->  C  e.  X )
dvcnvre.r  |-  ( ph  ->  R  e.  RR+ )
dvcnvre.s  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  X )
dvcnvre.t  |-  T  =  ( topGen `  ran  (,) )
dvcnvre.j  |-  J  =  ( TopOpen ` fld )
dvcnvre.m  |-  M  =  ( Jt  X )
dvcnvre.n  |-  N  =  ( Jt  Y )
Assertion
Ref Expression
dvcnvrelem2  |-  ( ph  ->  ( ( F `  C )  e.  ( ( int `  T
) `  Y )  /\  `' F  e.  (
( N  CnP  M
) `  ( F `  C ) ) ) )

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . . 6  |-  T  =  ( topGen `  ran  (,) )
2 retop 22565 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
31, 2eqeltri 2697 . . . . 5  |-  T  e. 
Top
43a1i 11 . . . 4  |-  ( ph  ->  T  e.  Top )
5 dvcnvre.1 . . . . . 6  |-  ( ph  ->  F : X -1-1-onto-> Y )
6 f1ofo 6144 . . . . . 6  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
7 forn 6118 . . . . . 6  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
85, 6, 73syl 18 . . . . 5  |-  ( ph  ->  ran  F  =  Y )
9 dvcnvre.f . . . . . 6  |-  ( ph  ->  F  e.  ( X
-cn-> RR ) )
10 cncff 22696 . . . . . 6  |-  ( F  e.  ( X -cn-> RR )  ->  F : X
--> RR )
11 frn 6053 . . . . . 6  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
129, 10, 113syl 18 . . . . 5  |-  ( ph  ->  ran  F  C_  RR )
138, 12eqsstr3d 3640 . . . 4  |-  ( ph  ->  Y  C_  RR )
14 imassrn 5477 . . . . 5  |-  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  ran  F
1514, 8syl5sseq 3653 . . . 4  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  Y )
16 uniretop 22566 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
171unieqi 4445 . . . . . 6  |-  U. T  =  U. ( topGen `  ran  (,) )
1816, 17eqtr4i 2647 . . . . 5  |-  RR  =  U. T
1918ntrss 20859 . . . 4  |-  ( ( T  e.  Top  /\  Y  C_  RR  /\  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  Y )  ->  (
( int `  T
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  C_  ( ( int `  T
) `  Y )
)
204, 13, 15, 19syl3anc 1326 . . 3  |-  ( ph  ->  ( ( int `  T
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  C_  ( ( int `  T
) `  Y )
)
21 dvcnvre.d . . . . 5  |-  ( ph  ->  dom  ( RR  _D  F )  =  X )
22 dvcnvre.z . . . . 5  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
23 dvcnvre.c . . . . 5  |-  ( ph  ->  C  e.  X )
24 dvcnvre.r . . . . 5  |-  ( ph  ->  R  e.  RR+ )
25 dvcnvre.s . . . . 5  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  X )
269, 21, 22, 5, 23, 24, 25dvcnvrelem1 23780 . . . 4  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
271fveq2i 6194 . . . . 5  |-  ( int `  T )  =  ( int `  ( topGen ` 
ran  (,) ) )
2827fveq1i 6192 . . . 4  |-  ( ( int `  T ) `
 ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( ( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )
2926, 28syl6eleqr 2712 . . 3  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  T ) `
 ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )
3020, 29sseldd 3604 . 2  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  T ) `
 Y ) )
31 f1ocnv 6149 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
32 f1of 6137 . . . . . . 7  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
335, 31, 323syl 18 . . . . . 6  |-  ( ph  ->  `' F : Y --> X )
34 ffun 6048 . . . . . 6  |-  ( `' F : Y --> X  ->  Fun  `' F )
35 funcnvres 5967 . . . . . 6  |-  ( Fun  `' F  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( `' F  |`  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
3633, 34, 353syl 18 . . . . 5  |-  ( ph  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( `' F  |`  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
37 dvbsss 23666 . . . . . . . . . . 11  |-  dom  ( RR  _D  F )  C_  RR
3821, 37syl6eqssr 3656 . . . . . . . . . 10  |-  ( ph  ->  X  C_  RR )
39 ax-resscn 9993 . . . . . . . . . 10  |-  RR  C_  CC
4038, 39syl6ss 3615 . . . . . . . . 9  |-  ( ph  ->  X  C_  CC )
41 cncfss 22702 . . . . . . . . 9  |-  ( ( ( ( C  -  R ) [,] ( C  +  R )
)  C_  X  /\  X  C_  CC )  -> 
( ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) -cn-> ( ( C  -  R ) [,] ( C  +  R ) ) ) 
C_  ( ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) -cn-> X ) )
4225, 40, 41syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) -cn-> ( ( C  -  R ) [,] ( C  +  R ) ) ) 
C_  ( ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) -cn-> X ) )
43 f1of1 6136 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
445, 43syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : X -1-1-> Y
)
45 f1ores 6151 . . . . . . . . . 10  |-  ( ( F : X -1-1-> Y  /\  ( ( C  -  R ) [,] ( C  +  R )
)  C_  X )  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) : ( ( C  -  R ) [,] ( C  +  R ) ) -1-1-onto-> ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )
4644, 25, 45syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) : ( ( C  -  R ) [,] ( C  +  R ) ) -1-1-onto-> ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )
47 dvcnvre.j . . . . . . . . . . . . . . 15  |-  J  =  ( TopOpen ` fld )
4847tgioo2 22606 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )
491, 48eqtri 2644 . . . . . . . . . . . . 13  |-  T  =  ( Jt  RR )
5049oveq1i 6660 . . . . . . . . . . . 12  |-  ( Tt  ( ( C  -  R
) [,] ( C  +  R ) ) )  =  ( ( Jt  RR )t  ( ( C  -  R ) [,] ( C  +  R
) ) )
5147cnfldtop 22587 . . . . . . . . . . . . . 14  |-  J  e. 
Top
5251a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
5325, 38sstrd 3613 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  RR )
54 reex 10027 . . . . . . . . . . . . . 14  |-  RR  e.  _V
5554a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  RR  e.  _V )
56 restabs 20969 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( C  -  R ) [,] ( C  +  R )
)  C_  RR  /\  RR  e.  _V )  ->  (
( Jt  RR )t  ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( Jt  ( ( C  -  R ) [,] ( C  +  R
) ) ) )
5752, 53, 55, 56syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Jt  RR )t  ( ( C  -  R
) [,] ( C  +  R ) ) )  =  ( Jt  ( ( C  -  R
) [,] ( C  +  R ) ) ) )
5850, 57syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  ( Tt  ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( Jt  ( ( C  -  R ) [,] ( C  +  R
) ) ) )
5938, 23sseldd 3604 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  RR )
6024rpred 11872 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  RR )
6159, 60resubcld 10458 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  R
)  e.  RR )
6259, 60readdcld 10069 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  +  R
)  e.  RR )
63 eqid 2622 . . . . . . . . . . . . 13  |-  ( Tt  ( ( C  -  R
) [,] ( C  +  R ) ) )  =  ( Tt  ( ( C  -  R
) [,] ( C  +  R ) ) )
641, 63icccmp 22628 . . . . . . . . . . . 12  |-  ( ( ( C  -  R
)  e.  RR  /\  ( C  +  R
)  e.  RR )  ->  ( Tt  ( ( C  -  R ) [,] ( C  +  R ) ) )  e.  Comp )
6561, 62, 64syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( Tt  ( ( C  -  R ) [,] ( C  +  R
) ) )  e. 
Comp )
6658, 65eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  ( Jt  ( ( C  -  R ) [,] ( C  +  R
) ) )  e. 
Comp )
67 f1of 6137 . . . . . . . . . . . 12  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) : ( ( C  -  R ) [,] ( C  +  R )
)
-1-1-onto-> ( F " ( ( C  -  R ) [,] ( C  +  R ) ) )  ->  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) : ( ( C  -  R
) [,] ( C  +  R ) ) --> ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) )
6846, 67syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) : ( ( C  -  R ) [,] ( C  +  R ) ) --> ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )
6912, 39syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  F  C_  CC )
7014, 69syl5ss 3614 . . . . . . . . . . . 12  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  CC )
71 rescncf 22700 . . . . . . . . . . . . 13  |-  ( ( ( C  -  R
) [,] ( C  +  R ) ) 
C_  X  ->  ( F  e.  ( X -cn->
RR )  ->  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  e.  ( ( ( C  -  R ) [,] ( C  +  R
) ) -cn-> RR ) ) )
7225, 9, 71sylc 65 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  e.  ( ( ( C  -  R
) [,] ( C  +  R ) )
-cn-> RR ) )
73 cncffvrn 22701 . . . . . . . . . . . 12  |-  ( ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  CC  /\  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  e.  ( ( ( C  -  R ) [,] ( C  +  R
) ) -cn-> RR ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  e.  ( ( ( C  -  R ) [,] ( C  +  R
) ) -cn-> ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )  <-> 
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) : ( ( C  -  R ) [,] ( C  +  R ) ) --> ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
7470, 72, 73syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( ( C  -  R ) [,] ( C  +  R )
) -cn-> ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  <->  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) : ( ( C  -  R
) [,] ( C  +  R ) ) --> ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) ) )
7568, 74mpbird 247 . . . . . . . . . 10  |-  ( ph  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  e.  ( ( ( C  -  R
) [,] ( C  +  R ) )
-cn-> ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) ) )
76 eqid 2622 . . . . . . . . . . 11  |-  ( Jt  ( ( C  -  R
) [,] ( C  +  R ) ) )  =  ( Jt  ( ( C  -  R
) [,] ( C  +  R ) ) )
7747, 76cncfcnvcn 22724 . . . . . . . . . 10  |-  ( ( ( Jt  ( ( C  -  R ) [,] ( C  +  R
) ) )  e. 
Comp  /\  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( ( C  -  R ) [,] ( C  +  R )
) -cn-> ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) : ( ( C  -  R
) [,] ( C  +  R ) ) -1-1-onto-> ( F " ( ( C  -  R ) [,] ( C  +  R ) ) )  <->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) -cn-> ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
7866, 75, 77syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) : ( ( C  -  R
) [,] ( C  +  R ) ) -1-1-onto-> ( F " ( ( C  -  R ) [,] ( C  +  R ) ) )  <->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) -cn-> ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
7946, 78mpbid 222 . . . . . . . 8  |-  ( ph  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) -cn-> ( ( C  -  R ) [,] ( C  +  R
) ) ) )
8042, 79sseldd 3604 . . . . . . 7  |-  ( ph  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) -cn-> X ) )
81 eqid 2622 . . . . . . . . 9  |-  ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )
82 dvcnvre.m . . . . . . . . 9  |-  M  =  ( Jt  X )
8347, 81, 82cncfcn 22712 . . . . . . . 8  |-  ( ( ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  CC  /\  X  C_  CC )  ->  (
( F " (
( C  -  R
) [,] ( C  +  R ) ) ) -cn-> X )  =  ( ( Jt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )  Cn  M ) )
8470, 40, 83syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) -cn-> X )  =  ( ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  Cn  M ) )
8580, 84eleqtrd 2703 . . . . . 6  |-  ( ph  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  Cn  M ) )
8659, 24ltsubrpd 11904 . . . . . . . . . 10  |-  ( ph  ->  ( C  -  R
)  <  C )
8761, 59, 86ltled 10185 . . . . . . . . 9  |-  ( ph  ->  ( C  -  R
)  <_  C )
8859, 24ltaddrpd 11905 . . . . . . . . . 10  |-  ( ph  ->  C  <  ( C  +  R ) )
8959, 62, 88ltled 10185 . . . . . . . . 9  |-  ( ph  ->  C  <_  ( C  +  R ) )
90 elicc2 12238 . . . . . . . . . 10  |-  ( ( ( C  -  R
)  e.  RR  /\  ( C  +  R
)  e.  RR )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  <->  ( C  e.  RR  /\  ( C  -  R )  <_  C  /\  C  <_  ( C  +  R )
) ) )
9161, 62, 90syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  <-> 
( C  e.  RR  /\  ( C  -  R
)  <_  C  /\  C  <_  ( C  +  R ) ) ) )
9259, 87, 89, 91mpbir3and 1245 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ( C  -  R ) [,] ( C  +  R ) ) )
93 ffun 6048 . . . . . . . . . 10  |-  ( F : X --> RR  ->  Fun 
F )
949, 10, 933syl 18 . . . . . . . . 9  |-  ( ph  ->  Fun  F )
95 fdm 6051 . . . . . . . . . . 11  |-  ( F : X --> RR  ->  dom 
F  =  X )
969, 10, 953syl 18 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  X )
9725, 96sseqtr4d 3642 . . . . . . . . 9  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  dom  F )
98 funfvima2 6493 . . . . . . . . 9  |-  ( ( Fun  F  /\  (
( C  -  R
) [,] ( C  +  R ) ) 
C_  dom  F )  ->  ( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( F `  C )  e.  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
9994, 97, 98syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( F `  C )  e.  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
10092, 99mpd 15 . . . . . . 7  |-  ( ph  ->  ( F `  C
)  e.  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )
10147cnfldtopon 22586 . . . . . . . . 9  |-  J  e.  (TopOn `  CC )
102 resttopon 20965 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  CC )  /\  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  CC )  ->  ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  e.  (TopOn `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
103101, 70, 102sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  e.  (TopOn `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) ) )
104 toponuni 20719 . . . . . . . 8  |-  ( ( Jt  ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) )  e.  (TopOn `  ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) )  ->  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  = 
U. ( Jt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
105103, 104syl 17 . . . . . . 7  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  =  U. ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
106100, 105eleqtrd 2703 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  U. ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
107 eqid 2622 . . . . . . 7  |-  U. ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  U. ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )
108107cncnpi 21082 . . . . . 6  |-  ( ( `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  Cn  M )  /\  ( F `  C )  e.  U. ( Jt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  e.  ( ( ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  CnP  M ) `
 ( F `  C ) ) )
10985, 106, 108syl2anc 693 . . . . 5  |-  ( ph  ->  `' ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  e.  ( ( ( Jt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )  CnP  M ) `  ( F `  C ) ) )
11036, 109eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( `' F  |`  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  e.  ( ( ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  CnP 
M ) `  ( F `  C )
) )
111 dvcnvre.n . . . . . . . 8  |-  N  =  ( Jt  Y )
112111oveq1i 6660 . . . . . . 7  |-  ( Nt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( ( Jt  Y )t  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )
113 ssexg 4804 . . . . . . . . 9  |-  ( ( Y  C_  RR  /\  RR  e.  _V )  ->  Y  e.  _V )
11413, 54, 113sylancl 694 . . . . . . . 8  |-  ( ph  ->  Y  e.  _V )
115 restabs 20969 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) 
C_  Y  /\  Y  e.  _V )  ->  (
( Jt  Y )t  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )
11652, 15, 114, 115syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( Jt  Y )t  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
117112, 116syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( Nt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( Jt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )
118117oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( Nt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )  CnP  M )  =  ( ( Jt  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) )  CnP  M ) )
119118fveq1d 6193 . . . 4  |-  ( ph  ->  ( ( ( Nt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  CnP  M ) `
 ( F `  C ) )  =  ( ( ( Jt  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  CnP  M ) `
 ( F `  C ) ) )
120110, 119eleqtrrd 2704 . . 3  |-  ( ph  ->  ( `' F  |`  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  e.  ( ( ( Nt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  CnP 
M ) `  ( F `  C )
) )
12113, 39syl6ss 3615 . . . . . . 7  |-  ( ph  ->  Y  C_  CC )
122 resttopon 20965 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  Y  C_  CC )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
123101, 121, 122sylancr 695 . . . . . 6  |-  ( ph  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
124111, 123syl5eqel 2705 . . . . 5  |-  ( ph  ->  N  e.  (TopOn `  Y ) )
125 topontop 20718 . . . . 5  |-  ( N  e.  (TopOn `  Y
)  ->  N  e.  Top )
126124, 125syl 17 . . . 4  |-  ( ph  ->  N  e.  Top )
127 toponuni 20719 . . . . . 6  |-  ( N  e.  (TopOn `  Y
)  ->  Y  =  U. N )
128124, 127syl 17 . . . . 5  |-  ( ph  ->  Y  =  U. N
)
12915, 128sseqtrd 3641 . . . 4  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  U. N )
13015, 13sstrd 3613 . . . . . . . . 9  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  RR )
131 difssd 3738 . . . . . . . . 9  |-  ( ph  ->  ( RR  \  Y
)  C_  RR )
132130, 131unssd 3789 . . . . . . . 8  |-  ( ph  ->  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) )  u.  ( RR  \  Y ) ) 
C_  RR )
133 ssun1 3776 . . . . . . . . 9  |-  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) )  u.  ( RR  \  Y ) )
134133a1i 11 . . . . . . . 8  |-  ( ph  ->  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  ( ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) )
13518ntrss 20859 . . . . . . . 8  |-  ( ( T  e.  Top  /\  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) )  u.  ( RR  \  Y ) ) 
C_  RR  /\  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) )  u.  ( RR  \  Y ) ) )  ->  ( ( int `  T ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  C_  ( ( int `  T ) `  ( ( F "
( ( C  -  R ) [,] ( C  +  R )
) )  u.  ( RR  \  Y ) ) ) )
1364, 132, 134, 135syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( int `  T
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  C_  ( ( int `  T
) `  ( ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) ) )
137136, 29sseldd 3604 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  T ) `
 ( ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) ) )
138 f1of 6137 . . . . . . . 8  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
1395, 138syl 17 . . . . . . 7  |-  ( ph  ->  F : X --> Y )
140139, 23ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  Y )
141137, 140elind 3798 . . . . 5  |-  ( ph  ->  ( F `  C
)  e.  ( ( ( int `  T
) `  ( ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) )  i^i 
Y ) )
142 eqid 2622 . . . . . . . 8  |-  ( Tt  Y )  =  ( Tt  Y )
14318, 142restntr 20986 . . . . . . 7  |-  ( ( T  e.  Top  /\  Y  C_  RR  /\  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  C_  Y )  ->  (
( int `  ( Tt  Y ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( ( ( int `  T
) `  ( ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) )  i^i 
Y ) )
1444, 13, 15, 143syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Tt  Y ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( ( ( int `  T
) `  ( ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  u.  ( RR  \  Y
) ) )  i^i 
Y ) )
145 restabs 20969 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  Y  C_  RR  /\  RR  e.  _V )  ->  (
( Jt  RR )t  Y )  =  ( Jt  Y ) )
14652, 13, 55, 145syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( ( Jt  RR )t  Y )  =  ( Jt  Y ) )
14749oveq1i 6660 . . . . . . . . 9  |-  ( Tt  Y )  =  ( ( Jt  RR )t  Y )
148146, 147, 1113eqtr4g 2681 . . . . . . . 8  |-  ( ph  ->  ( Tt  Y )  =  N )
149148fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( int `  ( Tt  Y ) )  =  ( int `  N
) )
150149fveq1d 6193 . . . . . 6  |-  ( ph  ->  ( ( int `  ( Tt  Y ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( ( int `  N ) `
 ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )
151144, 150eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( ( int `  T ) `  (
( F " (
( C  -  R
) [,] ( C  +  R ) ) )  u.  ( RR 
\  Y ) ) )  i^i  Y )  =  ( ( int `  N ) `  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
152141, 151eleqtrd 2703 . . . 4  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  N ) `
 ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) ) )
153128feq2d 6031 . . . . . 6  |-  ( ph  ->  ( `' F : Y
--> X  <->  `' F : U. N --> X ) )
15433, 153mpbid 222 . . . . 5  |-  ( ph  ->  `' F : U. N --> X )
155 resttopon 20965 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  CC )  /\  X  C_  CC )  ->  ( Jt  X )  e.  (TopOn `  X ) )
156101, 40, 155sylancr 695 . . . . . . 7  |-  ( ph  ->  ( Jt  X )  e.  (TopOn `  X ) )
15782, 156syl5eqel 2705 . . . . . 6  |-  ( ph  ->  M  e.  (TopOn `  X ) )
158 toponuni 20719 . . . . . 6  |-  ( M  e.  (TopOn `  X
)  ->  X  =  U. M )
159 feq3 6028 . . . . . 6  |-  ( X  =  U. M  -> 
( `' F : U. N --> X  <->  `' F : U. N --> U. M
) )
160157, 158, 1593syl 18 . . . . 5  |-  ( ph  ->  ( `' F : U. N --> X  <->  `' F : U. N --> U. M
) )
161154, 160mpbid 222 . . . 4  |-  ( ph  ->  `' F : U. N --> U. M )
162 eqid 2622 . . . . 5  |-  U. N  =  U. N
163 eqid 2622 . . . . 5  |-  U. M  =  U. M
164162, 163cnprest 21093 . . . 4  |-  ( ( ( N  e.  Top  /\  ( F " (
( C  -  R
) [,] ( C  +  R ) ) )  C_  U. N )  /\  ( ( F `
 C )  e.  ( ( int `  N
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  /\  `' F : U. N --> U. M ) )  -> 
( `' F  e.  ( ( N  CnP  M ) `  ( F `
 C ) )  <-> 
( `' F  |`  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  e.  ( ( ( Nt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  CnP 
M ) `  ( F `  C )
) ) )
165126, 129, 152, 161, 164syl22anc 1327 . . 3  |-  ( ph  ->  ( `' F  e.  ( ( N  CnP  M ) `  ( F `
 C ) )  <-> 
( `' F  |`  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) )  e.  ( ( ( Nt  ( F "
( ( C  -  R ) [,] ( C  +  R )
) ) )  CnP 
M ) `  ( F `  C )
) ) )
166120, 165mpbird 247 . 2  |-  ( ph  ->  `' F  e.  (
( N  CnP  M
) `  ( F `  C ) ) )
16730, 166jca 554 1  |-  ( ph  ->  ( ( F `  C )  e.  ( ( int `  T
) `  Y )  /\  `' F  e.  (
( N  CnP  M
) `  ( F `  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029   Compccmp 21189   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcnvre  23782
  Copyright terms: Public domain W3C validator