MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rollelem Structured version   Visualization version   Unicode version

Theorem rollelem 23752
Description: Lemma for rolle 23753. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.r  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  U ) )
rolle.u  |-  ( ph  ->  U  e.  ( A [,] B ) )
rolle.n  |-  ( ph  ->  -.  U  e.  { A ,  B }
)
Assertion
Ref Expression
rollelem  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, y, A    ph, x, y    x, B, y    x, F, y   
x, U, y

Proof of Theorem rollelem
StepHypRef Expression
1 rolle.n . . 3  |-  ( ph  ->  -.  U  e.  { A ,  B }
)
2 rolle.u . . . . . 6  |-  ( ph  ->  U  e.  ( A [,] B ) )
3 rolle.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
43rexrd 10089 . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
5 rolle.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
65rexrd 10089 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
7 rolle.lt . . . . . . . 8  |-  ( ph  ->  A  <  B )
83, 5, 7ltled 10185 . . . . . . 7  |-  ( ph  ->  A  <_  B )
9 prunioo 12301 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
104, 6, 8, 9syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( A (,) B )  u.  { A ,  B }
)  =  ( A [,] B ) )
112, 10eleqtrrd 2704 . . . . 5  |-  ( ph  ->  U  e.  ( ( A (,) B )  u.  { A ,  B } ) )
12 elun 3753 . . . . 5  |-  ( U  e.  ( ( A (,) B )  u. 
{ A ,  B } )  <->  ( U  e.  ( A (,) B
)  \/  U  e. 
{ A ,  B } ) )
1311, 12sylib 208 . . . 4  |-  ( ph  ->  ( U  e.  ( A (,) B )  \/  U  e.  { A ,  B }
) )
1413ord 392 . . 3  |-  ( ph  ->  ( -.  U  e.  ( A (,) B
)  ->  U  e.  { A ,  B }
) )
151, 14mt3d 140 . 2  |-  ( ph  ->  U  e.  ( A (,) B ) )
16 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
17 cncff 22696 . . . 4  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
1816, 17syl 17 . . 3  |-  ( ph  ->  F : ( A [,] B ) --> RR )
19 iccssre 12255 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
203, 5, 19syl2anc 693 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  RR )
21 ioossicc 12259 . . . 4  |-  ( A (,) B )  C_  ( A [,] B )
2221a1i 11 . . 3  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
23 rolle.d . . . 4  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
2415, 23eleqtrrd 2704 . . 3  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
25 rolle.r . . . 4  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  U ) )
26 ssralv 3666 . . . 4  |-  ( ( A (,) B ) 
C_  ( A [,] B )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  <_  ( F `  U )  ->  A. y  e.  ( A (,) B
) ( F `  y )  <_  ( F `  U )
) )
2722, 25, 26sylc 65 . . 3  |-  ( ph  ->  A. y  e.  ( A (,) B ) ( F `  y
)  <_  ( F `  U ) )
2818, 20, 15, 22, 24, 27dvferm 23751 . 2  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  =  0 )
29 fveq2 6191 . . . 4  |-  ( x  =  U  ->  (
( RR  _D  F
) `  x )  =  ( ( RR 
_D  F ) `  U ) )
3029eqeq1d 2624 . . 3  |-  ( x  =  U  ->  (
( ( RR  _D  F ) `  x
)  =  0  <->  (
( RR  _D  F
) `  U )  =  0 ) )
3130rspcev 3309 . 2  |-  ( ( U  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  U
)  =  0 )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
3215, 28, 31syl2anc 693 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  rolle  23753
  Copyright terms: Public domain W3C validator