Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerp Structured version   Visualization version   Unicode version

Theorem sge0gerp 40612
Description: The arbitrary sum of nonnegative extended reals is larger or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerp.x  |-  ( ph  ->  X  e.  V )
sge0gerp.f  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
sge0gerp.a  |-  ( ph  ->  A  e.  RR* )
sge0gerp.z  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. z  e.  ( ~P X  i^i  Fin ) A  <_  (
(Σ^ `  ( F  |`  z
) ) +e
x ) )
Assertion
Ref Expression
sge0gerp  |-  ( ph  ->  A  <_  (Σ^ `  F ) )
Distinct variable groups:    x, A, z    x, F, z    x, X, z    ph, x, z
Allowed substitution hints:    V( x, z)

Proof of Theorem sge0gerp
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . 3  |-  F/ x ph
2 simpr 477 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ~P X  i^i  Fin ) )  ->  z  e.  ( ~P X  i^i  Fin ) )
3 sge0gerp.f . . . . . . . 8  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
43adantr 481 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P X  i^i  Fin ) )  ->  F : X --> ( 0 [,] +oo ) )
5 elinel1 3799 . . . . . . . . 9  |-  ( z  e.  ( ~P X  i^i  Fin )  ->  z  e.  ~P X )
6 elpwi 4168 . . . . . . . . 9  |-  ( z  e.  ~P X  -> 
z  C_  X )
75, 6syl 17 . . . . . . . 8  |-  ( z  e.  ( ~P X  i^i  Fin )  ->  z  C_  X )
87adantl 482 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P X  i^i  Fin ) )  ->  z  C_  X )
94, 8fssresd 6071 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  z ) : z --> ( 0 [,] +oo ) )
102, 9sge0xrcl 40602 . . . . 5  |-  ( (
ph  /\  z  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  z ) )  e.  RR* )
1110ralrimiva 2966 . . . 4  |-  ( ph  ->  A. z  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  z
) )  e.  RR* )
12 eqid 2622 . . . . 5  |-  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )  =  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )
1312rnmptss 6392 . . . 4  |-  ( A. z  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  z ) )  e.  RR*  ->  ran  (
z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )  C_  RR* )
1411, 13syl 17 . . 3  |-  ( ph  ->  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )  C_  RR* )
15 sge0gerp.a . . 3  |-  ( ph  ->  A  e.  RR* )
16 sge0gerp.z . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. z  e.  ( ~P X  i^i  Fin ) A  <_  (
(Σ^ `  ( F  |`  z
) ) +e
x ) )
17 nfv 1843 . . . . 5  |-  F/ z ( ph  /\  x  e.  RR+ )
18 nfmpt1 4747 . . . . . . 7  |-  F/_ z
( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )
1918nfrn 5368 . . . . . 6  |-  F/_ z ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )
20 nfv 1843 . . . . . 6  |-  F/ z  A  <_  ( y +e x )
2119, 20nfrex 3007 . . . . 5  |-  F/ z E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x )
22 id 22 . . . . . . . . 9  |-  ( z  e.  ( ~P X  i^i  Fin )  ->  z  e.  ( ~P X  i^i  Fin ) )
23 fvexd 6203 . . . . . . . . 9  |-  ( z  e.  ( ~P X  i^i  Fin )  ->  (Σ^ `  ( F  |`  z ) )  e.  _V )
2412elrnmpt1 5374 . . . . . . . . 9  |-  ( ( z  e.  ( ~P X  i^i  Fin )  /\  (Σ^ `  ( F  |`  z
) )  e.  _V )  ->  (Σ^ `  ( F  |`  z
) )  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) )
2522, 23, 24syl2anc 693 . . . . . . . 8  |-  ( z  e.  ( ~P X  i^i  Fin )  ->  (Σ^ `  ( F  |`  z ) )  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) )
26253ad2ant2 1083 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  z  e.  ( ~P X  i^i  Fin )  /\  A  <_ 
( (Σ^ `  ( F  |`  z
) ) +e
x ) )  -> 
(Σ^ `  ( F  |`  z
) )  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) )
27 simp3 1063 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  z  e.  ( ~P X  i^i  Fin )  /\  A  <_ 
( (Σ^ `  ( F  |`  z
) ) +e
x ) )  ->  A  <_  ( (Σ^ `  ( F  |`  z
) ) +e
x ) )
28 nfv 1843 . . . . . . . 8  |-  F/ y  A  <_  ( (Σ^ `  ( F  |`  z ) ) +e x )
29 oveq1 6657 . . . . . . . . 9  |-  ( y  =  (Σ^ `  ( F  |`  z
) )  ->  (
y +e x )  =  ( (Σ^ `  ( F  |`  z ) ) +e x ) )
3029breq2d 4665 . . . . . . . 8  |-  ( y  =  (Σ^ `  ( F  |`  z
) )  ->  ( A  <_  ( y +e x )  <->  A  <_  ( (Σ^ `  ( F  |`  z
) ) +e
x ) ) )
3128, 30rspce 3304 . . . . . . 7  |-  ( ( (Σ^ `  ( F  |`  z
) )  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) )  /\  A  <_  ( (Σ^ `  ( F  |`  z
) ) +e
x ) )  ->  E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x ) )
3226, 27, 31syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  z  e.  ( ~P X  i^i  Fin )  /\  A  <_ 
( (Σ^ `  ( F  |`  z
) ) +e
x ) )  ->  E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x ) )
33323exp 1264 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( z  e.  ( ~P X  i^i  Fin )  ->  ( A  <_  ( (Σ^ `  ( F  |`  z
) ) +e
x )  ->  E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x ) ) ) )
3417, 21, 33rexlimd 3026 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. z  e.  ( ~P X  i^i  Fin ) A  <_  ( (Σ^ `  ( F  |`  z
) ) +e
x )  ->  E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x ) ) )
3516, 34mpd 15 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) A  <_  ( y +e x ) )
361, 14, 15, 35supxrge 39554 . 2  |-  ( ph  ->  A  <_  sup ( ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) , 
RR* ,  <  ) )
37 sge0gerp.x . . . 4  |-  ( ph  ->  X  e.  V )
3837, 3sge0sup 40608 . . 3  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  ( z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) , 
RR* ,  <  ) )
3938eqcomd 2628 . 2  |-  ( ph  ->  sup ( ran  (
z  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  z
) ) ) , 
RR* ,  <  )  =  (Σ^ `  F ) )
4036, 39breqtrd 4679 1  |-  ( ph  ->  A  <_  (Σ^ `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   +ecxad 11944   [,]cicc 12178  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0gerpmpt  40619
  Copyright terms: Public domain W3C validator