Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfres Structured version   Visualization version   Unicode version

Theorem smfres 40997
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfres.s  |-  ( ph  ->  S  e. SAlg )
smfres.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfres.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
smfres  |-  ( ph  ->  ( F  |`  A )  e.  (SMblFn `  S
) )

Proof of Theorem smfres
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ a
ph
2 smfres.s . 2  |-  ( ph  ->  S  e. SAlg )
3 inss1 3833 . . . 4  |-  ( dom 
F  i^i  A )  C_ 
dom  F
43a1i 11 . . 3  |-  ( ph  ->  ( dom  F  i^i  A )  C_  dom  F )
5 smfres.f . . . 4  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
6 eqid 2622 . . . 4  |-  dom  F  =  dom  F
72, 5, 6smfdmss 40942 . . 3  |-  ( ph  ->  dom  F  C_  U. S
)
84, 7sstrd 3613 . 2  |-  ( ph  ->  ( dom  F  i^i  A )  C_  U. S )
92, 5, 6smff 40941 . . 3  |-  ( ph  ->  F : dom  F --> RR )
10 fresin 6073 . . 3  |-  ( F : dom  F --> RR  ->  ( F  |`  A ) : ( dom  F  i^i  A ) --> RR )
119, 10syl 17 . 2  |-  ( ph  ->  ( F  |`  A ) : ( dom  F  i^i  A ) --> RR )
12 ovexd 6680 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( St  dom 
F )  e.  _V )
13 smfres.a . . . . 5  |-  ( ph  ->  A  e.  V )
1413adantr 481 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  V )
152adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  S  e. SAlg
)
165adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  F  e.  (SMblFn `  S )
)
17 mnfxr 10096 . . . . . 6  |- -oo  e.  RR*
1817a1i 11 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  -> -oo  e.  RR* )
19 rexr 10085 . . . . . 6  |-  ( a  e.  RR  ->  a  e.  RR* )
2019adantl 482 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  a  e. 
RR* )
2115, 16, 6, 18, 20smfpimioo 40994 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' F " ( -oo (,) a ) )  e.  ( St  dom  F ) )
22 eqid 2622 . . . 4  |-  ( ( `' F " ( -oo (,) a ) )  i^i 
A )  =  ( ( `' F "
( -oo (,) a ) )  i^i  A )
2312, 14, 21, 22elrestd 39291 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( `' F " ( -oo (,) a ) )  i^i 
A )  e.  ( ( St  dom  F )t  A ) )
249ffund 6049 . . . . . . . 8  |-  ( ph  ->  Fun  F )
25 respreima 6344 . . . . . . . 8  |-  ( Fun 
F  ->  ( `' ( F  |`  A )
" ( -oo (,) a ) )  =  ( ( `' F " ( -oo (,) a
) )  i^i  A
) )
2624, 25syl 17 . . . . . . 7  |-  ( ph  ->  ( `' ( F  |`  A ) " ( -oo (,) a ) )  =  ( ( `' F " ( -oo (,) a ) )  i^i 
A ) )
2726eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( `' F " ( -oo (,) a
) )  i^i  A
)  =  ( `' ( F  |`  A )
" ( -oo (,) a ) ) )
2827adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( `' F " ( -oo (,) a ) )  i^i 
A )  =  ( `' ( F  |`  A ) " ( -oo (,) a ) ) )
2911adantr 481 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( F  |`  A ) : ( dom  F  i^i  A
) --> RR )
3029, 20preimaioomnf 40929 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' ( F  |`  A )
" ( -oo (,) a ) )  =  { x  e.  ( dom  F  i^i  A
)  |  ( ( F  |`  A ) `  x )  <  a } )
3128, 30eqtr2d 2657 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  ( dom  F  i^i  A )  |  ( ( F  |`  A ) `  x )  <  a }  =  ( ( `' F " ( -oo (,) a ) )  i^i 
A ) )
325dmexd 39422 . . . . . . 7  |-  ( ph  ->  dom  F  e.  _V )
33 restco 20968 . . . . . . 7  |-  ( ( S  e. SAlg  /\  dom  F  e.  _V  /\  A  e.  V )  ->  (
( St  dom  F )t  A )  =  ( St  ( dom 
F  i^i  A )
) )
342, 32, 13, 33syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( St  dom  F
)t 
A )  =  ( St  ( dom  F  i^i  A ) ) )
3534adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( St 
dom  F )t  A )  =  ( St  ( dom 
F  i^i  A )
) )
3635eqcomd 2628 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( St  ( dom  F  i^i  A
) )  =  ( ( St  dom  F )t  A ) )
3731, 36eleq12d 2695 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( { x  e.  ( dom 
F  i^i  A )  |  ( ( F  |`  A ) `  x
)  <  a }  e.  ( St  ( dom  F  i^i  A ) )  <->  ( ( `' F " ( -oo (,) a ) )  i^i 
A )  e.  ( ( St  dom  F )t  A ) ) )
3823, 37mpbird 247 . 2  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  ( dom  F  i^i  A )  |  ( ( F  |`  A ) `  x )  <  a }  e.  ( St  ( dom  F  i^i  A ) ) )
391, 2, 8, 11, 38issmfd 40944 1  |-  ( ph  ->  ( F  |`  A )  e.  (SMblFn `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074   (,)cioo 12175   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator