![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version Unicode version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 11839 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rpgt0 11844 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 0re 10040 |
. . 3
![]() ![]() ![]() ![]() | |
4 | ltle 10126 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpan 706 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | sylc 65 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-rp 11833 |
This theorem is referenced by: rprege0 11847 rpge0d 11876 xralrple 12036 xlemul1 12120 infmrp1 12174 sqrlem1 13983 rpsqrtcl 14005 divrcnv 14584 ef01bndlem 14914 stdbdmet 22321 reconnlem2 22630 cphsqrtcl3 22987 iscmet3lem3 23088 minveclem3 23200 itg2const2 23508 itg2mulclem 23513 aalioulem2 24088 pige3 24269 argregt0 24356 argrege0 24357 cxpcn3 24489 cxplim 24698 cxp2lim 24703 divsqrtsumlem 24706 logdiflbnd 24721 basellem4 24810 ppiltx 24903 bposlem8 25016 bposlem9 25017 chebbnd1 25161 mulog2sumlem2 25224 selbergb 25238 selberg2b 25241 nmcexi 28885 nmcopexi 28886 nmcfnexi 28910 sqsscirc1 29954 divsqrtid 30672 logdivsqrle 30728 hgt750lem2 30730 subfacval3 31171 ptrecube 33409 heicant 33444 itg2addnclem 33461 itg2gt0cn 33465 areacirclem1 33500 areacirclem4 33503 areacirc 33505 cntotbnd 33595 xralrple4 39589 xralrple3 39590 fourierdlem103 40426 blenre 42368 |
Copyright terms: Public domain | W3C validator |