Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   Unicode version

Theorem sge0uzfsumgt 40661
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p  |-  F/ k
ph
sge0uzfsumgt.h  |-  ( ph  ->  K  e.  ZZ )
sge0uzfsumgt.z  |-  Z  =  ( ZZ>= `  K )
sge0uzfsumgt.b  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  ( 0 [,) +oo ) )
sge0uzfsumgt.c  |-  ( ph  ->  C  e.  RR )
sge0uzfsumgt.l  |-  ( ph  ->  C  <  (Σ^ `  ( k  e.  Z  |->  B ) ) )
Assertion
Ref Expression
sge0uzfsumgt  |-  ( ph  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B )
Distinct variable groups:    B, m    C, m    k, K, m   
k, Z, m    ph, m
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem sge0uzfsumgt
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3  |-  F/ k
ph
2 sge0uzfsumgt.z . . . . 5  |-  Z  =  ( ZZ>= `  K )
3 fvex 6201 . . . . 5  |-  ( ZZ>= `  K )  e.  _V
42, 3eqeltri 2697 . . . 4  |-  Z  e. 
_V
54a1i 11 . . 3  |-  ( ph  ->  Z  e.  _V )
6 sge0uzfsumgt.b . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  ( 0 [,) +oo ) )
7 sge0uzfsumgt.c . . 3  |-  ( ph  ->  C  e.  RR )
8 sge0uzfsumgt.l . . 3  |-  ( ph  ->  C  <  (Σ^ `  ( k  e.  Z  |->  B ) ) )
91, 5, 6, 7, 8sge0gtfsumgt 40660 . 2  |-  ( ph  ->  E. x  e.  ( ~P Z  i^i  Fin ) C  <  sum_ k  e.  x  B )
10 sge0uzfsumgt.h . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
11103ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  K  e.  ZZ )
12 elpwinss 39216 . . . . . . 7  |-  ( x  e.  ( ~P Z  i^i  Fin )  ->  x  C_  Z )
13123ad2ant2 1083 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  x  C_  Z
)
14 elinel2 3800 . . . . . . 7  |-  ( x  e.  ( ~P Z  i^i  Fin )  ->  x  e.  Fin )
15143ad2ant2 1083 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  x  e.  Fin )
1611, 2, 13, 15uzfissfz 39542 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  E. m  e.  Z  x  C_  ( K ... m ) )
177ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  C  e.  RR )
18 nfv 1843 . . . . . . . . . . . . 13  |-  F/ k  x  C_  ( K ... m )
191, 18nfan 1828 . . . . . . . . . . . 12  |-  F/ k ( ph  /\  x  C_  ( K ... m
) )
20 fzfid 12772 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  ( K ... m ) )  ->  ( K ... m )  e.  Fin )
21 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  ( K ... m ) )  ->  x  C_  ( K ... m ) )
2220, 21ssfid 8183 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  ( K ... m ) )  ->  x  e.  Fin )
23 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  ( K ... m
) )  /\  k  e.  x )  ->  ph )
2421sselda 3603 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  ( K ... m
) )  /\  k  e.  x )  ->  k  e.  ( K ... m
) )
25 rge0ssre 12280 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  C_  RR
26 fzssuz 12382 . . . . . . . . . . . . . . . . 17  |-  ( K ... m )  C_  ( ZZ>= `  K )
2726, 2sseqtr4i 3638 . . . . . . . . . . . . . . . 16  |-  ( K ... m )  C_  Z
28 id 22 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( K ... m )  ->  k  e.  ( K ... m
) )
2927, 28sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( K ... m )  ->  k  e.  Z )
3029, 6sylan2 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( K ... m ) )  ->  B  e.  ( 0 [,) +oo ) )
3125, 30sseldi 3601 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( K ... m ) )  ->  B  e.  RR )
3223, 24, 31syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  ( K ... m
) )  /\  k  e.  x )  ->  B  e.  RR )
3319, 22, 32fsumreclf 39808 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  ( K ... m ) )  ->  sum_ k  e.  x  B  e.  RR )
3433adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  sum_ k  e.  x  B  e.  RR )
35 fzfid 12772 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ... m
)  e.  Fin )
361, 35, 31fsumreclf 39808 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( K ... m ) B  e.  RR )
3736ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  sum_ k  e.  ( K ... m
) B  e.  RR )
38 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  C  <  sum_ k  e.  x  B )
3931adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  ( K ... m
) )  /\  k  e.  ( K ... m
) )  ->  B  e.  RR )
40 0xr 10086 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
4140a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( K ... m ) )  ->  0  e.  RR* )
42 pnfxr 10092 . . . . . . . . . . . . . . 15  |- +oo  e.  RR*
4342a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( K ... m ) )  -> +oo  e.  RR* )
44 icogelb 12225 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  B  e.  ( 0 [,) +oo ) )  ->  0  <_  B )
4541, 43, 30, 44syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( K ... m ) )  ->  0  <_  B )
4645adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  ( K ... m
) )  /\  k  e.  ( K ... m
) )  ->  0  <_  B )
4719, 20, 39, 46, 21fsumlessf 39809 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  ( K ... m ) )  ->  sum_ k  e.  x  B  <_  sum_ k  e.  ( K ... m ) B )
4847adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  sum_ k  e.  x  B  <_  sum_ k  e.  ( K ... m ) B )
4917, 34, 37, 38, 48ltletrd 10197 . . . . . . . . 9  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  x  C_  ( K ... m
) )  ->  C  <  sum_ k  e.  ( K ... m ) B )
5049ex 450 . . . . . . . 8  |-  ( (
ph  /\  C  <  sum_ k  e.  x  B )  ->  ( x  C_  ( K ... m
)  ->  C  <  sum_ k  e.  ( K ... m ) B ) )
5150adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  C  <  sum_ k  e.  x  B )  /\  m  e.  Z )  ->  (
x  C_  ( K ... m )  ->  C  <  sum_ k  e.  ( K ... m ) B ) )
52513adantl2 1218 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B )  /\  m  e.  Z )  ->  (
x  C_  ( K ... m )  ->  C  <  sum_ k  e.  ( K ... m ) B ) )
5352reximdva 3017 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  ( E. m  e.  Z  x  C_  ( K ... m
)  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B ) )
5416, 53mpd 15 . . . 4  |-  ( (
ph  /\  x  e.  ( ~P Z  i^i  Fin )  /\  C  <  sum_ k  e.  x  B
)  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B )
55543exp 1264 . . 3  |-  ( ph  ->  ( x  e.  ( ~P Z  i^i  Fin )  ->  ( C  <  sum_ k  e.  x  B  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B ) ) )
5655rexlimdv 3030 . 2  |-  ( ph  ->  ( E. x  e.  ( ~P Z  i^i  Fin ) C  <  sum_ k  e.  x  B  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B ) )
579, 56mpd 15 1  |-  ( ph  ->  E. m  e.  Z  C  <  sum_ k  e.  ( K ... m ) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   ...cfz 12326   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  hoidmvlelem3  40811
  Copyright terms: Public domain W3C validator