Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0seq Structured version   Visualization version   Unicode version

Theorem sge0seq 40663
Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0seq.m  |-  ( ph  ->  M  e.  ZZ )
sge0seq.z  |-  Z  =  ( ZZ>= `  M )
sge0seq.f  |-  ( ph  ->  F : Z --> ( 0 [,) +oo ) )
sge0seq.g  |-  G  =  seq M (  +  ,  F )
Assertion
Ref Expression
sge0seq  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  G ,  RR* ,  <  ) )

Proof of Theorem sge0seq
Dummy variables  k 
i  j  w  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0seq.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
2 sge0seq.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
3 rge0ssre 12280 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR
4 sge0seq.f . . . . . . . . 9  |-  ( ph  ->  F : Z --> ( 0 [,) +oo ) )
54ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( 0 [,) +oo ) )
63, 5sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
7 readdcl 10019 . . . . . . . 8  |-  ( ( k  e.  RR  /\  i  e.  RR )  ->  ( k  +  i )  e.  RR )
87adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  RR  /\  i  e.  RR ) )  -> 
( k  +  i )  e.  RR )
91, 2, 6, 8seqf 12822 . . . . . 6  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
10 sge0seq.g . . . . . . . 8  |-  G  =  seq M (  +  ,  F )
1110a1i 11 . . . . . . 7  |-  ( ph  ->  G  =  seq M
(  +  ,  F
) )
1211feq1d 6030 . . . . . 6  |-  ( ph  ->  ( G : Z --> RR 
<->  seq M (  +  ,  F ) : Z --> RR ) )
139, 12mpbird 247 . . . . 5  |-  ( ph  ->  G : Z --> RR )
14 frn 6053 . . . . 5  |-  ( G : Z --> RR  ->  ran 
G  C_  RR )
1513, 14syl 17 . . . 4  |-  ( ph  ->  ran  G  C_  RR )
16 ressxr 10083 . . . . 5  |-  RR  C_  RR*
1716a1i 11 . . . 4  |-  ( ph  ->  RR  C_  RR* )
1815, 17sstrd 3613 . . 3  |-  ( ph  ->  ran  G  C_  RR* )
19 fvex 6201 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
201, 19eqeltri 2697 . . . . 5  |-  Z  e. 
_V
2120a1i 11 . . . 4  |-  ( ph  ->  Z  e.  _V )
22 icossicc 12260 . . . . . 6  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
2322a1i 11 . . . . 5  |-  ( ph  ->  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )
244, 23fssd 6057 . . . 4  |-  ( ph  ->  F : Z --> ( 0 [,] +oo ) )
2521, 24sge0xrcl 40602 . . 3  |-  ( ph  ->  (Σ^ `  F )  e.  RR* )
26 simpr 477 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  z  e.  ran  G )
27 ffn 6045 . . . . . . . . 9  |-  ( G : Z --> RR  ->  G  Fn  Z )
2813, 27syl 17 . . . . . . . 8  |-  ( ph  ->  G  Fn  Z )
29 fvelrnb 6243 . . . . . . . 8  |-  ( G  Fn  Z  ->  (
z  e.  ran  G  <->  E. j  e.  Z  ( G `  j )  =  z ) )
3028, 29syl 17 . . . . . . 7  |-  ( ph  ->  ( z  e.  ran  G  <->  E. j  e.  Z  ( G `  j )  =  z ) )
3130adantr 481 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
z  e.  ran  G  <->  E. j  e.  Z  ( G `  j )  =  z ) )
3226, 31mpbid 222 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  E. j  e.  Z  ( G `  j )  =  z )
3322, 5sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( 0 [,] +oo ) )
34 elfzuz 12338 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... j )  ->  k  e.  ( ZZ>= `  M )
)
3534, 1syl6eleqr 2712 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... j )  ->  k  e.  Z )
3635ssriv 3607 . . . . . . . . . . . 12  |-  ( M ... j )  C_  Z
3736a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( M ... j
)  C_  Z )
3821, 33, 37sge0lessmpt 40616 . . . . . . . . . 10  |-  ( ph  ->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  <_ 
(Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) )
39383ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  <_ 
(Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) )
40 fzfid 12772 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... j
)  e.  Fin )
4135, 5sylan2 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M ... j ) )  ->  ( F `  k )  e.  ( 0 [,) +oo )
)
4240, 41sge0fsummpt 40607 . . . . . . . . . . . . 13  |-  ( ph  ->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  = 
sum_ k  e.  ( M ... j ) ( F `  k
) )
43423ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  = 
sum_ k  e.  ( M ... j ) ( F `  k
) )
44 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ph )
4535adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  k  e.  Z )
46 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
4744, 45, 46syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( F `  k )  =  ( F `  k ) )
481eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  <->  j  e.  ( ZZ>= `  M )
)
4948biimpi 206 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  M )
)
5049adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
516recnd 10068 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
5244, 45, 51syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( F `  k )  e.  CC )
5347, 50, 52fsumser 14461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ k  e.  ( M ... j
) ( F `  k )  =  (  seq M (  +  ,  F ) `  j ) )
54533adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  sum_ k  e.  ( M ... j
) ( F `  k )  =  (  seq M (  +  ,  F ) `  j ) )
5543, 54eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  =  (  seq M (  +  ,  F ) `
 j ) )
5610eqcomi 2631 . . . . . . . . . . . . 13  |-  seq M
(  +  ,  F
)  =  G
5756fveq1i 6192 . . . . . . . . . . . 12  |-  (  seq M (  +  ,  F ) `  j
)  =  ( G `
 j )
5857a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( G `
 j ) )
59 simp3 1063 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  ( G `  j )  =  z )
6055, 58, 593eqtrrd 2661 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  z  =  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) ) )
614feqmptd 6249 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( k  e.  Z  |->  ( F `
 k ) ) )
6261fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  (Σ^ `  F )  =  (Σ^ `  (
k  e.  Z  |->  ( F `  k ) ) ) )
63623ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  (Σ^ `  F )  =  (Σ^ `  (
k  e.  Z  |->  ( F `  k ) ) ) )
6460, 63breq12d 4666 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  ( z  <_  (Σ^ `  F )  <->  (Σ^ `  ( k  e.  ( M ... j ) 
|->  ( F `  k
) ) )  <_ 
(Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) ) )
6539, 64mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z  /\  ( G `  j )  =  z )  ->  z  <_  (Σ^ `  F
) )
66653exp 1264 . . . . . . 7  |-  ( ph  ->  ( j  e.  Z  ->  ( ( G `  j )  =  z  ->  z  <_  (Σ^ `  F
) ) ) )
6766adantr 481 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
j  e.  Z  -> 
( ( G `  j )  =  z  ->  z  <_  (Σ^ `  F
) ) ) )
6867rexlimdv 3030 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  ( E. j  e.  Z  ( G `  j )  =  z  ->  z  <_  (Σ^ `  F ) ) )
6932, 68mpd 15 . . . 4  |-  ( (
ph  /\  z  e.  ran  G )  ->  z  <_  (Σ^ `  F ) )
7069ralrimiva 2966 . . 3  |-  ( ph  ->  A. z  e.  ran  G  z  <_  (Σ^ `  F ) )
71 nfv 1843 . . . . . . . 8  |-  F/ k ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )
7220a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  ->  Z  e.  _V )
735ad4ant14 1293 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( 0 [,) +oo ) )
74 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  -> 
z  e.  RR )
75 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  z  <  (Σ^ `  F
) )  ->  z  <  (Σ^ `  F ) )
7662adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  z  <  (Σ^ `  F
) )  ->  (Σ^ `  F
)  =  (Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) )
7775, 76breqtrd 4679 . . . . . . . . 9  |-  ( (
ph  /\  z  <  (Σ^ `  F
) )  ->  z  <  (Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) )
7877adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  -> 
z  <  (Σ^ `  ( k  e.  Z  |->  ( F `  k
) ) ) )
7971, 72, 73, 74, 78sge0gtfsumgt 40660 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  ->  E. w  e.  ( ~P Z  i^i  Fin )
z  <  sum_ k  e.  w  ( F `  k ) )
8023ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k )
)  ->  M  e.  ZZ )
81 elpwinss 39216 . . . . . . . . . . . . . 14  |-  ( w  e.  ( ~P Z  i^i  Fin )  ->  w  C_  Z )
82813ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k )
)  ->  w  C_  Z
)
83 elinel2 3800 . . . . . . . . . . . . . 14  |-  ( w  e.  ( ~P Z  i^i  Fin )  ->  w  e.  Fin )
84833ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k )
)  ->  w  e.  Fin )
8580, 1, 82, 84uzfissfz 39542 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k )
)  ->  E. j  e.  Z  w  C_  ( M ... j ) )
86853adant1r 1319 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  ->  E. j  e.  Z  w  C_  ( M ... j ) )
87 simpl1r 1113 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  -> 
z  e.  RR )
8883adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin ) )  ->  w  e.  Fin )
8961, 6fmpt3d 6386 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F : Z --> RR )
9089ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  ( ~P Z  i^i  Fin ) )  /\  k  e.  w )  ->  F : Z --> RR )
9181sselda 3603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  ( ~P Z  i^i  Fin )  /\  k  e.  w
)  ->  k  e.  Z )
9291adantll 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  ( ~P Z  i^i  Fin ) )  /\  k  e.  w )  ->  k  e.  Z )
9390, 92ffvelrnd 6360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  ( ~P Z  i^i  Fin ) )  /\  k  e.  w )  ->  ( F `  k )  e.  RR )
9488, 93fsumrecl 14465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( ~P Z  i^i  Fin ) )  ->  sum_ k  e.  w  ( F `  k )  e.  RR )
9594ad4ant13 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )
)  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  w  ( F `  k )  e.  RR )
96953adantl3 1219 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  w  ( F `  k )  e.  RR )
9735, 6sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( M ... j ) )  ->  ( F `  k )  e.  RR )
9840, 97fsumrecl 14465 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
sum_ k  e.  ( M ... j ) ( F `  k
)  e.  RR )
9998ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )
)  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  ( M ... j ) ( F `  k
)  e.  RR )
100993adantl3 1219 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  ( M ... j ) ( F `  k )  e.  RR )
101 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  -> 
z  <  sum_ k  e.  w  ( F `  k ) )
10240adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  C_  ( M ... j ) )  ->  ( M ... j )  e.  Fin )
10397adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  C_  ( M ... j
) )  /\  k  e.  ( M ... j
) )  ->  ( F `  k )  e.  RR )
104 0xr 10086 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  RR*
105104a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  0  e.  RR* )
106 pnfxr 10092 . . . . . . . . . . . . . . . . . . . . 21  |- +oo  e.  RR*
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  -> +oo  e.  RR* )
108 icogelb 12225 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `
 k )  e.  ( 0 [,) +oo ) )  ->  0  <_  ( F `  k
) )
109105, 107, 5, 108syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
11035, 109sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( M ... j ) )  ->  0  <_  ( F `  k ) )
111110adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  C_  ( M ... j
) )  /\  k  e.  ( M ... j
) )  ->  0  <_  ( F `  k
) )
112 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  C_  ( M ... j ) )  ->  w  C_  ( M ... j ) )
113102, 103, 111, 112fsumless 14528 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  w  ( F `  k )  <_  sum_ k  e.  ( M ... j ) ( F `  k
) )
114113adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  w  C_  ( M ... j
) )  ->  sum_ k  e.  w  ( F `  k )  <_  sum_ k  e.  ( M ... j
) ( F `  k ) )
1151143ad2antl1 1223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  ->  sum_ k  e.  w  ( F `  k )  <_  sum_ k  e.  ( M ... j ) ( F `  k
) )
11687, 96, 100, 101, 115ltletrd 10197 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  /\  w  C_  ( M ... j ) )  -> 
z  <  sum_ k  e.  ( M ... j
) ( F `  k ) )
117116ex 450 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  ->  ( w  C_  ( M ... j
)  ->  z  <  sum_ k  e.  ( M ... j ) ( F `  k ) ) )
118117reximdv 3016 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  ->  ( E. j  e.  Z  w  C_  ( M ... j
)  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k ) ) )
11986, 118mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  w  e.  ( ~P Z  i^i  Fin )  /\  z  <  sum_ k  e.  w  ( F `  k ) )  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k ) )
1201193exp 1264 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  RR )  ->  ( w  e.  ( ~P Z  i^i  Fin )  ->  (
z  <  sum_ k  e.  w  ( F `  k )  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k ) ) ) )
121120adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  -> 
( w  e.  ( ~P Z  i^i  Fin )  ->  ( z  <  sum_ k  e.  w  ( F `  k )  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) ) ) )
122121rexlimdv 3030 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  -> 
( E. w  e.  ( ~P Z  i^i  Fin ) z  <  sum_ k  e.  w  ( F `  k )  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) ) )
12379, 122mpd 15 . . . . . 6  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  ->  E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) )
1249ffnd 6046 . . . . . . . . . . . . . . 15  |-  ( ph  ->  seq M (  +  ,  F )  Fn  Z )
125124adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  seq M (  +  ,  F )  Fn  Z
)
12650, 48sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
127 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( (  seq M (  +  ,  F )  Fn  Z  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  ran  seq M (  +  ,  F ) )
128125, 126, 127syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  ran  seq M (  +  ,  F ) )
12910a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  Z )  ->  G  =  seq M (  +  ,  F ) )
130129rneqd 5353 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  Z )  ->  ran  G  =  ran  seq M
(  +  ,  F
) )
13153, 130eleq12d 2695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  ( sum_ k  e.  ( M ... j ) ( F `  k )  e.  ran  G  <->  (  seq M (  +  ,  F ) `  j
)  e.  ran  seq M (  +  ,  F ) ) )
132128, 131mpbird 247 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ k  e.  ( M ... j
) ( F `  k )  e.  ran  G )
133132adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  j  e.  Z )  ->  sum_ k  e.  ( M ... j
) ( F `  k )  e.  ran  G )
1341333adant3 1081 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  j  e.  Z  /\  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) )  ->  sum_ k  e.  ( M ... j
) ( F `  k )  e.  ran  G )
135 simp3 1063 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  j  e.  Z  /\  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) )  ->  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) )
136 breq2 4657 . . . . . . . . . . 11  |-  ( y  =  sum_ k  e.  ( M ... j ) ( F `  k
)  ->  ( z  <  y  <->  z  <  sum_ k  e.  ( M ... j ) ( F `
 k ) ) )
137136rspcev 3309 . . . . . . . . . 10  |-  ( (
sum_ k  e.  ( M ... j ) ( F `  k
)  e.  ran  G  /\  z  <  sum_ k  e.  ( M ... j
) ( F `  k ) )  ->  E. y  e.  ran  G  z  <  y )
138134, 135, 137syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR )  /\  j  e.  Z  /\  z  <  sum_ k  e.  ( M ... j ) ( F `  k
) )  ->  E. y  e.  ran  G  z  < 
y )
1391383exp 1264 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  ( j  e.  Z  ->  (
z  <  sum_ k  e.  ( M ... j
) ( F `  k )  ->  E. y  e.  ran  G  z  < 
y ) ) )
140139rexlimdv 3030 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `  k
)  ->  E. y  e.  ran  G  z  < 
y ) )
141140adantr 481 . . . . . 6  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  -> 
( E. j  e.  Z  z  <  sum_ k  e.  ( M ... j ) ( F `
 k )  ->  E. y  e.  ran  G  z  <  y ) )
142123, 141mpd 15 . . . . 5  |-  ( ( ( ph  /\  z  e.  RR )  /\  z  <  (Σ^ `  F ) )  ->  E. y  e.  ran  G  z  <  y )
143142ex 450 . . . 4  |-  ( (
ph  /\  z  e.  RR )  ->  ( z  <  (Σ^ `  F )  ->  E. y  e.  ran  G  z  < 
y ) )
144143ralrimiva 2966 . . 3  |-  ( ph  ->  A. z  e.  RR  ( z  <  (Σ^ `  F
)  ->  E. y  e.  ran  G  z  < 
y ) )
145 supxr2 12144 . . 3  |-  ( ( ( ran  G  C_  RR* 
/\  (Σ^ `  F )  e.  RR* )  /\  ( A. z  e.  ran  G  z  <_ 
(Σ^ `  F )  /\  A. z  e.  RR  (
z  <  (Σ^ `  F )  ->  E. y  e.  ran  G  z  < 
y ) ) )  ->  sup ( ran  G ,  RR* ,  <  )  =  (Σ^ `  F ) )
14618, 25, 70, 144, 145syl22anc 1327 . 2  |-  ( ph  ->  sup ( ran  G ,  RR* ,  <  )  =  (Σ^ `  F ) )
147146eqcomd 2628 1  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  G ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   [,]cicc 12178   ...cfz 12326    seqcseq 12801   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  voliunsge0lem  40689  ovolval2  40858
  Copyright terms: Public domain W3C validator