MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   Unicode version

Theorem wlkiswwlksupgr2 26763
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 26761 does not require  G to be a simple pseudograph, but it requires the Axiom of Choice (ac6 9302) for its proof. Notice that only the existence of a function  f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 26761). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2  |-  ( G  e. UPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
Distinct variable groups:    f, G    P, f

Proof of Theorem wlkiswwlksupgr2
Dummy variables  i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . 3  |-  (Edg `  G )  =  (Edg
`  G )
31, 2iswwlks 26728 . 2  |-  ( P  e.  (WWalks `  G
)  <->  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
4 edgval 25941 . . . . . . . . . . . . 13  |-  (Edg `  G )  =  ran  (iEdg `  G )
54eleq2i 2693 . . . . . . . . . . . 12  |-  ( { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G ) )
6 upgruhgr 25997 . . . . . . . . . . . . . . 15  |-  ( G  e. UPGraph  ->  G  e. UHGraph  )
7 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (iEdg `  G )  =  (iEdg `  G )
87uhgrfun 25961 . . . . . . . . . . . . . . 15  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
96, 8syl 17 . . . . . . . . . . . . . 14  |-  ( G  e. UPGraph  ->  Fun  (iEdg `  G
) )
109adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. UPGraph  )  ->  Fun  (iEdg `  G
) )
11 elrnrexdm 6363 . . . . . . . . . . . . . 14  |-  ( Fun  (iEdg `  G )  ->  ( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  (iEdg `  G )  ->  E. x  e.  dom  (iEdg `  G ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  =  ( (iEdg `  G ) `  x
) ) )
12 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  ( (iEdg `  G ) `  x
) )
1312rexbii 3041 . . . . . . . . . . . . . 14  |-  ( E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  E. x  e.  dom  (iEdg `  G
) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  =  ( (iEdg `  G ) `  x ) )
1411, 13syl6ibr 242 . . . . . . . . . . . . 13  |-  ( Fun  (iEdg `  G )  ->  ( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  (iEdg `  G )  ->  E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) )
1510, 14syl 17 . . . . . . . . . . . 12  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. UPGraph  )  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G )  ->  E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) )
165, 15syl5bi 232 . . . . . . . . . . 11  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. UPGraph  )  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) )
1716ralimdv 2963 . . . . . . . . . 10  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. UPGraph  )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) )
1817ex 450 . . . . . . . . 9  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( G  e. UPGraph  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) )
1918com23 86 . . . . . . . 8  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  -> 
( G  e. UPGraph  ->  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) E. x  e. 
dom  (iEdg `  G )
( (iEdg `  G
) `  x )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
20193impia 1261 . . . . . . 7  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( G  e. UPGraph  ->  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) E. x  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  x
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
2120impcom 446 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) E. x  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  x )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } )
22 ovex 6678 . . . . . . 7  |-  ( 0..^ ( ( # `  P
)  -  1 ) )  e.  _V
23 fvex 6201 . . . . . . . 8  |-  (iEdg `  G )  e.  _V
2423dmex 7099 . . . . . . 7  |-  dom  (iEdg `  G )  e.  _V
25 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( f `  i )  ->  (
(iEdg `  G ) `  x )  =  ( (iEdg `  G ) `  ( f `  i
) ) )
2625eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( f `  i )  ->  (
( (iEdg `  G
) `  x )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
2722, 24, 26ac6 9302 . . . . . 6  |-  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) E. x  e. 
dom  (iEdg `  G )
( (iEdg `  G
) `  x )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  E. f
( f : ( 0..^ ( ( # `  P )  -  1 ) ) --> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
2821, 27syl 17 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  E. f
( f : ( 0..^ ( ( # `  P )  -  1 ) ) --> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
29 iswrdi 13309 . . . . . . . . . 10  |-  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  f  e. Word  dom  (iEdg `  G )
)
3029adantr 481 . . . . . . . . 9  |-  ( ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  f  e. Word  dom  (iEdg `  G
) )
3130adantl 482 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  -> 
f  e. Word  dom  (iEdg `  G ) )
32 wrdfin 13323 . . . . . . . . . . . . . . . 16  |-  ( P  e. Word  (Vtx `  G
)  ->  P  e.  Fin )
33 hashnncl 13157 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Fin  ->  (
( # `  P )  e.  NN  <->  P  =/=  (/) ) )
3433bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Fin  ->  ( P  =/=  (/)  <->  ( # `  P
)  e.  NN ) )
3532, 34syl 17 . . . . . . . . . . . . . . 15  |-  ( P  e. Word  (Vtx `  G
)  ->  ( P  =/=  (/)  <->  ( # `  P
)  e.  NN ) )
3635biimpac 503 . . . . . . . . . . . . . 14  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( # `  P
)  e.  NN )
37 wrdf 13310 . . . . . . . . . . . . . . . 16  |-  ( P  e. Word  (Vtx `  G
)  ->  P :
( 0..^ ( # `  P ) ) --> (Vtx
`  G ) )
38 nnz 11399 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  P )  e.  NN  ->  ( # `  P
)  e.  ZZ )
39 fzoval 12471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  P )  e.  ZZ  ->  ( 0..^ ( # `  P
) )  =  ( 0 ... ( (
# `  P )  -  1 ) ) )
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  P )  e.  NN  ->  ( 0..^ ( # `  P
) )  =  ( 0 ... ( (
# `  P )  -  1 ) ) )
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
0..^ ( # `  P
) )  =  ( 0 ... ( (
# `  P )  -  1 ) ) )
42 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  P )  e.  NN  ->  ( ( # `
 P )  - 
1 )  e.  NN0 )
43 fnfzo0hash 13234 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( # `  P
)  -  1 )  e.  NN0  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  ( # `
 f )  =  ( ( # `  P
)  -  1 ) )
4442, 43sylan 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  ( # `
 f )  =  ( ( # `  P
)  -  1 ) )
4544eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
( # `  P )  -  1 )  =  ( # `  f
) )
4645oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
0 ... ( ( # `  P )  -  1 ) )  =  ( 0 ... ( # `  f ) ) )
4741, 46eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
0..^ ( # `  P
) )  =  ( 0 ... ( # `  f ) ) )
4847feq2d 6031 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  P
)  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  ( P : ( 0..^ (
# `  P )
) --> (Vtx `  G
)  <->  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G ) ) )
4948biimpcd 239 . . . . . . . . . . . . . . . . 17  |-  ( P : ( 0..^ (
# `  P )
) --> (Vtx `  G
)  ->  ( (
( # `  P )  e.  NN  /\  f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
) )  ->  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G ) ) )
5049expd 452 . . . . . . . . . . . . . . . 16  |-  ( P : ( 0..^ (
# `  P )
) --> (Vtx `  G
)  ->  ( ( # `
 P )  e.  NN  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) ) )
5137, 50syl 17 . . . . . . . . . . . . . . 15  |-  ( P  e. Word  (Vtx `  G
)  ->  ( ( # `
 P )  e.  NN  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) ) )
5251adantl 482 . . . . . . . . . . . . . 14  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( ( # `
 P )  e.  NN  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) ) )
5336, 52mpd 15 . . . . . . . . . . . . 13  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) )
54533adant3 1081 . . . . . . . . . . . 12  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) )
5554adantl 482 . . . . . . . . . . 11  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) )
5655com12 32 . . . . . . . . . 10  |-  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) )
5756adantr 481 . . . . . . . . 9  |-  ( ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  (
( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )
) )
5857impcom 446 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G ) )
59 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
6036, 44sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  f :
( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  ->  ( # `
 f )  =  ( ( # `  P
)  -  1 ) )
6160oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  f :
( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
0..^ ( # `  f
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) )
6261ex 450 . . . . . . . . . . . . . . 15  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  ( 0..^ ( # `  f
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) ) )
63623adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
)  ->  ( 0..^ ( # `  f
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) ) )
6463adantl 482 . . . . . . . . . . . . 13  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  ->  ( 0..^ ( # `  f
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) ) )
6564imp 445 . . . . . . . . . . . 12  |-  ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  ->  (
0..^ ( # `  f
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) )
6665adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( 0..^ (
# `  f )
)  =  ( 0..^ ( ( # `  P
)  -  1 ) ) )
6766raleqdv 3144 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( A. i  e.  ( 0..^ ( # `  f ) ) ( (iEdg `  G ) `  ( f `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  <->  A. i  e.  (
0..^ ( ( # `  P )  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
6859, 67mpbird 247 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
6968anasss 679 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  ->  A. i  e.  (
0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
7031, 58, 693jca 1242 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  /\  ( f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  -> 
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
7170ex 450 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( (
f : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  (
f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
7271eximdv 1846 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( E. f ( f : ( 0..^ ( (
# `  P )  -  1 ) ) --> dom  (iEdg `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) ( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  E. f
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
7328, 72mpd 15 . . . 4  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  E. f
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
741, 7upgriswlk 26537 . . . . . 6  |-  ( G  e. UPGraph  ->  ( f (Walks `  G ) P  <->  ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
7574adantr 481 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( f
(Walks `  G ) P 
<->  ( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
7675exbidv 1850 . . . 4  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( E. f  f (Walks `  G ) P  <->  E. f
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
7773, 76mpbird 247 . . 3  |-  ( ( G  e. UPGraph  /\  ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  E. f 
f (Walks `  G
) P )
7877ex 450 . 2  |-  ( G  e. UPGraph  ->  ( ( P  =/=  (/)  /\  P  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  E. f  f (Walks `  G ) P ) )
793, 78syl5bi 232 1  |-  ( G  e. UPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975  Walkscwlks 26492  WWalkscwwlks 26717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-wwlks 26722
This theorem is referenced by:  wlkiswwlkupgr  26764  wlklnwwlklnupgr2  26771
  Copyright terms: Public domain W3C validator