![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climexp | Structured version Visualization version GIF version |
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climexp.1 | ⊢ Ⅎ𝑘𝜑 |
climexp.2 | ⊢ Ⅎ𝑘𝐹 |
climexp.3 | ⊢ Ⅎ𝑘𝐻 |
climexp.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climexp.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climexp.6 | ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
climexp.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climexp.8 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
climexp.9 | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
climexp.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) |
Ref | Expression |
---|---|
climexp | ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climexp.4 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climexp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climexp.8 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | eqid 2622 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | expcn 22675 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
7 | 4 | cncfcn1 22713 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
8 | 6, 7 | syl6eleqr 2712 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
9 | climexp.6 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) | |
10 | climexp.7 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | climcl 14230 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 1, 2, 8, 9, 10, 12 | climcncf 22703 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴)) |
14 | eqidd 2623 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
15 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
16 | 15 | oveq1d 6665 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥↑𝑁) = (𝐴↑𝑁)) |
17 | 12, 3 | expcld 13008 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
18 | 14, 16, 12, 17 | fvmptd 6288 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴) = (𝐴↑𝑁)) |
19 | 13, 18 | breqtrd 4679 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁)) |
20 | climexp.9 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
21 | cnex 10017 | . . . . 5 ⊢ ℂ ∈ V | |
22 | 21 | mptex 6486 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V |
23 | fvex 6201 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ∈ V | |
24 | 1, 23 | eqeltri 2697 | . . . . 5 ⊢ 𝑍 ∈ V |
25 | fex 6490 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | |
26 | 9, 24, 25 | sylancl 694 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
27 | coexg 7117 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) | |
28 | 22, 26, 27 | sylancr 695 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) |
29 | eqidd 2623 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
30 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → 𝑥 = (𝐹‘𝑗)) | |
31 | 30 | oveq1d 6665 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → (𝑥↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
32 | 9 | ffvelrnda 6359 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
33 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑁 ∈ ℕ0) |
34 | 32, 33 | expcld 13008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)↑𝑁) ∈ ℂ) |
35 | 29, 31, 32, 34 | fvmptd 6288 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗)) = ((𝐹‘𝑗)↑𝑁)) |
36 | fvco3 6275 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) | |
37 | 9, 36 | sylan 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) |
38 | climexp.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
39 | nfv 1843 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
40 | 38, 39 | nfan 1828 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
41 | climexp.3 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐻 | |
42 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
43 | 41, 42 | nffv 6198 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
44 | climexp.2 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
45 | 44, 42 | nffv 6198 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
46 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑘↑ | |
47 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑁 | |
48 | 45, 46, 47 | nfov 6676 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑗)↑𝑁) |
49 | 43, 48 | nfeq 2776 | . . . . . 6 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁) |
50 | 40, 49 | nfim 1825 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
51 | eleq1 2689 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
52 | 51 | anbi2d 740 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
53 | fveq2 6191 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
54 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
55 | 54 | oveq1d 6665 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
56 | 53, 55 | eqeq12d 2637 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁))) |
57 | 52, 56 | imbi12d 334 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)))) |
58 | climexp.10 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) | |
59 | 50, 57, 58 | chvar 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
60 | 35, 37, 59 | 3eqtr4rd 2667 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗)) |
61 | 1, 20, 28, 2, 60 | climeq 14298 | . 2 ⊢ (𝜑 → (𝐻 ⇝ (𝐴↑𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁))) |
62 | 19, 61 | mpbird 247 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 ↑cexp 12860 ⇝ cli 14215 TopOpenctopn 16082 ℂfldccnfld 19746 Cn ccn 21028 –cn→ccncf 22679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-hmeo 21558 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 |
This theorem is referenced by: stirlinglem8 40298 |
Copyright terms: Public domain | W3C validator |