| Step | Hyp | Ref
| Expression |
| 1 | | cncfioobd.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | cncfioobd.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
| 4 | | eqid 2622 |
. . . 4
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) |
| 5 | | cncfioobd.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 6 | | cncfioobd.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
| 7 | | cncfioobd.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
| 8 | 3, 4, 1, 2, 5, 6, 7 | cncfiooicc 40107 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 9 | | cniccbdd 23230 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 10 | 1, 2, 8, 9 | syl3anc 1326 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 11 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ℝ) |
| 12 | | nfra1 2941 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 |
| 13 | 11, 12 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 14 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 15 | | cncff 22696 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 16 | 5, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(𝐴(,)𝐵)⟶ℂ → dom 𝐹 = (𝐴(,)𝐵)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = (𝐴(,)𝐵)) |
| 19 | 18 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝐵) = dom 𝐹) |
| 20 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹) |
| 21 | 14, 20 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹) |
| 22 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ) |
| 23 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ) |
| 24 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 25 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) |
| 26 | 18 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵)) |
| 27 | 25, 26 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 28 | 22, 23, 24, 4, 27 | cncfioobdlem 40109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
| 29 | 21, 28 | syldan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
| 30 | 29 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) |
| 31 | 30 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
| 32 | 31 | ad4ant14 1293 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
| 33 | | simplr 792 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 34 | | ioossicc 12259 |
. . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 35 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 36 | 34, 35 | sseldi 3601 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
| 37 | | rspa 2930 |
. . . . . . . 8
⊢
((∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 38 | 33, 36, 37 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 39 | 32, 38 | eqbrtrd 4675 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 40 | 39 | ex 450 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 41 | 13, 40 | ralrimi 2957 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 42 | 41 | ex 450 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 43 | 42 | reximdva 3017 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 44 | 10, 43 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |