| Step | Hyp | Ref
| Expression |
| 1 | | 0re 10040 |
. . 3
⊢ 0 ∈
ℝ |
| 2 | | ral0 4076 |
. . . 4
⊢
∀𝑦 ∈
∅ (abs‘(𝐹‘𝑦)) ≤ 0 |
| 3 | | simp1 1061 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐴 ∈ ℝ) |
| 4 | 3 | rexrd 10089 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐴 ∈
ℝ*) |
| 5 | | simp2 1062 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐵 ∈ ℝ) |
| 6 | 5 | rexrd 10089 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐵 ∈
ℝ*) |
| 7 | | icc0 12223 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| 8 | 4, 6, 7 | syl2anc 693 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| 9 | 8 | biimpar 502 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
| 10 | 9 | raleqdv 3144 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐵 < 𝐴) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 0 ↔ ∀𝑦 ∈ ∅ (abs‘(𝐹‘𝑦)) ≤ 0)) |
| 11 | 2, 10 | mpbiri 248 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐵 < 𝐴) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 0) |
| 12 | | breq2 4657 |
. . . . 5
⊢ (𝑥 = 0 → ((abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑦)) ≤ 0)) |
| 13 | 12 | ralbidv 2986 |
. . . 4
⊢ (𝑥 = 0 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 0)) |
| 14 | 13 | rspcev 3309 |
. . 3
⊢ ((0
∈ ℝ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 15 | 1, 11, 14 | sylancr 695 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐵 < 𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 16 | 3 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 17 | 5 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 18 | | simpr 477 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) |
| 19 | | simp3 1063 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 20 | | abscncf 22704 |
. . . . . . . 8
⊢ abs
∈ (ℂ–cn→ℝ) |
| 21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → abs ∈ (ℂ–cn→ℝ)) |
| 22 | 19, 21 | cncfco 22710 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 23 | 22 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 24 | 16, 17, 18, 23 | evthicc 23228 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑦))) |
| 25 | 24 | simpld 475 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧)) |
| 26 | | cncff 22696 |
. . . . . . . 8
⊢ ((abs
∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (abs ∘ 𝐹):(𝐴[,]𝐵)⟶ℝ) |
| 27 | 22, 26 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (abs ∘ 𝐹):(𝐴[,]𝐵)⟶ℝ) |
| 28 | 27 | ffvelrnda 6359 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) ∈ ℝ) |
| 29 | | cncff 22696 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 30 | 19, 29 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 32 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 33 | 31, 32 | sylan 488 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 34 | 33 | breq1d 4663 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧))) |
| 35 | 34 | ralbidva 2985 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧))) |
| 36 | 35 | biimpd 219 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧))) |
| 37 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑥 = ((abs ∘ 𝐹)‘𝑧) → ((abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧))) |
| 38 | 37 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = ((abs ∘ 𝐹)‘𝑧) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧))) |
| 39 | 38 | rspcev 3309 |
. . . . . 6
⊢ ((((abs
∘ 𝐹)‘𝑧) ∈ ℝ ∧
∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs ∘ 𝐹)‘𝑧)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 40 | 28, 36, 39 | syl6an 568 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 41 | 40 | rexlimdva 3031 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 42 | 41 | imp 445 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑧)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 43 | 25, 42 | syldan 487 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 44 | 15, 43, 5, 3 | ltlecasei 10145 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |