MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Visualization version   GIF version

Theorem c1liplem1 23759
Description: Lemma for c1lip1 23760. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a (𝜑𝐴 ∈ ℝ)
c1liplem1.b (𝜑𝐵 ∈ ℝ)
c1liplem1.le (𝜑𝐴𝐵)
c1liplem1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1liplem1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.k 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
Assertion
Ref Expression
c1liplem1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem c1liplem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2 imassrn 5477 . . . . . 6 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ran abs
3 absf 14077 . . . . . . 7 abs:ℂ⟶ℝ
4 frn 6053 . . . . . . 7 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
53, 4ax-mp 5 . . . . . 6 ran abs ⊆ ℝ
62, 5sstri 3612 . . . . 5 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ
76a1i 11 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
8 dvf 23671 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
9 ffun 6048 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
108, 9ax-mp 5 . . . . . . 7 Fun (ℝ D 𝐹)
1110a1i 11 . . . . . 6 (𝜑 → Fun (ℝ D 𝐹))
12 c1liplem1.dv . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
13 cncff 22696 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 fdm 6051 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1512, 13, 143syl 18 . . . . . . 7 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
16 ssdmres 5420 . . . . . . 7 ((𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1715, 16sylibr 224 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
18 c1liplem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1918rexrd 10089 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
20 c1liplem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2120rexrd 10089 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
22 c1liplem1.le . . . . . . 7 (𝜑𝐴𝐵)
23 lbicc2 12288 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2419, 21, 22, 23syl3anc 1326 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
25 funfvima2 6493 . . . . . . 7 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝐴 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
2625imp 445 . . . . . 6 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
2711, 17, 24, 26syl21anc 1325 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
28 ffun 6048 . . . . . . 7 (abs:ℂ⟶ℝ → Fun abs)
293, 28ax-mp 5 . . . . . 6 Fun abs
30 imassrn 5477 . . . . . . . 8 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ran (ℝ D 𝐹)
31 frn 6053 . . . . . . . . 9 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → ran (ℝ D 𝐹) ⊆ ℂ)
328, 31ax-mp 5 . . . . . . . 8 ran (ℝ D 𝐹) ⊆ ℂ
3330, 32sstri 3612 . . . . . . 7 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ℂ
343fdmi 6052 . . . . . . 7 dom abs = ℂ
3533, 34sseqtr4i 3638 . . . . . 6 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs
36 funfvima2 6493 . . . . . 6 ((Fun abs ∧ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs) → (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
3729, 35, 36mp2an 708 . . . . 5 (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
38 ne0i 3921 . . . . 5 ((abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
3927, 37, 383syl 18 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
40 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
41 ssid 3624 . . . . . . . 8 ℂ ⊆ ℂ
42 cncfss 22702 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4340, 41, 42mp2an 708 . . . . . . 7 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4443, 12sseldi 3601 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
45 cniccbdd 23230 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
4618, 20, 44, 45syl3anc 1326 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
47 fvelima 6248 . . . . . . . . . 10 ((Fun abs ∧ 𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
4829, 47mpan 706 . . . . . . . . 9 (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
49 fvelima 6248 . . . . . . . . . . . . . 14 ((Fun (ℝ D 𝐹) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
5010, 49mpan 706 . . . . . . . . . . . . 13 (𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
51 fvres 6207 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5251adantl 482 . . . . . . . . . . . . . . . . . 18 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5352fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) = (abs‘((ℝ D 𝐹)‘𝑏)))
54 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏))
5554fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑏 → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)))
5655breq1d 4663 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎))
5756rspccva 3308 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎)
5853, 57eqbrtrrd 4677 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
5958adantll 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
60 fveq2 6191 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑏)) = (abs‘𝑦))
6160breq1d 4663 . . . . . . . . . . . . . . 15 (((ℝ D 𝐹)‘𝑏) = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎 ↔ (abs‘𝑦) ≤ 𝑎))
6259, 61syl5ibcom 235 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
6362rexlimdva 3031 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
6450, 63syl5 34 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘𝑦) ≤ 𝑎))
6564imp 445 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘𝑦) ≤ 𝑎)
66 breq1 4656 . . . . . . . . . . 11 ((abs‘𝑦) = 𝑏 → ((abs‘𝑦) ≤ 𝑎𝑏𝑎))
6765, 66syl5ibcom 235 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ((abs‘𝑦) = 𝑏𝑏𝑎))
6867rexlimdva 3031 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏𝑏𝑎))
6948, 68syl5 34 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → 𝑏𝑎))
7069ralrimiv 2965 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
7170ex 450 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7271reximdva 3017 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7346, 72mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
74 suprcl 10983 . . . 4 (((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ ∧ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎) → sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ)
757, 39, 73, 74syl3anc 1326 . . 3 (𝜑 → sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ)
761, 75syl5eqel 2705 . 2 (𝜑𝐾 ∈ ℝ)
77 simplrr 801 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
78 fvres 6207 . . . . . . . . . . 11 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
7977, 78syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
80 c1liplem1.cn . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
81 cncff 22696 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8280, 81syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8382ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8483, 77ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
8584recnd 10068 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℂ)
8679, 85eqeltrrd 2702 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑦) ∈ ℂ)
87 simplrl 800 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
88 fvres 6207 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
8987, 88syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
9083, 87ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
9190recnd 10068 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℂ)
9289, 91eqeltrrd 2702 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥) ∈ ℂ)
9386, 92subcld 10392 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹𝑦) − (𝐹𝑥)) ∈ ℂ)
94 iccssre 12255 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9518, 20, 94syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9695ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ)
9796, 77sseldd 3604 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9896, 87sseldd 3604 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
9997, 98resubcld 10458 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
10099recnd 10068 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
101 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
102 difrp 11868 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
10398, 97, 102syl2anc 693 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
104101, 103mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
105104rpne0d 11877 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ≠ 0)
10693, 100, 105absdivd 14194 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))))
1076a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
10839ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
10973ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
11029a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → Fun abs)
11193, 100, 105divcld 10801 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
112111, 34syl6eleqr 2712 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs)
11398rexrd 10089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
11497rexrd 10089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
11598, 97, 101ltled 10185 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
116 ubicc2 12289 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
117113, 114, 115, 116syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
118 fvres 6207 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑥[,]𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) = (𝐹𝑦))
119117, 118syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) = (𝐹𝑦))
120 lbicc2 12288 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
121113, 114, 115, 120syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
122 fvres 6207 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑥[,]𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥) = (𝐹𝑥))
123121, 122syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥) = (𝐹𝑥))
124119, 123oveq12d 6668 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) = ((𝐹𝑦) − (𝐹𝑥)))
125124oveq1d 6665 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) = (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
126 iccss2 12244 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
127126ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
128127resabs1d 5428 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) = (𝐹 ↾ (𝑥[,]𝑦)))
12980ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
130 rescncf 22700 . . . . . . . . . . . . . . 15 ((𝑥[,]𝑦) ⊆ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ)))
131127, 129, 130sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
132128, 131eqeltrrd 2702 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
13340a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ℝ ⊆ ℂ)
134 c1liplem1.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
135134ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹 ∈ (ℂ ↑pm ℝ))
136 cnex 10017 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
137 reex 10027 . . . . . . . . . . . . . . . . . . . 20 ℝ ∈ V
138136, 137elpm2 7889 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
139138simplbi 476 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
140135, 139syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:dom 𝐹⟶ℂ)
141138simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
142135, 141syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom 𝐹 ⊆ ℝ)
143 iccssre 12255 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,]𝑦) ⊆ ℝ)
14498, 97, 143syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ ℝ)
145 eqid 2622 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
146145tgioo2 22606 . . . . . . . . . . . . . . . . . 18 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
147145, 146dvres 23675 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:dom 𝐹⟶ℂ) ∧ (dom 𝐹 ⊆ ℝ ∧ (𝑥[,]𝑦) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
148133, 140, 142, 144, 147syl22anc 1327 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
149 iccntr 22624 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
15098, 97, 149syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
151150reseq2d 5396 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
152148, 151eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
153152dmeqd 5326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
154 ioossicc 12259 . . . . . . . . . . . . . . . . 17 (𝑥(,)𝑦) ⊆ (𝑥[,]𝑦)
155154, 127syl5ss 3614 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ (𝐴[,]𝐵))
15617ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
157155, 156sstrd 3613 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹))
158 ssdmres 5420 . . . . . . . . . . . . . . 15 ((𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
159157, 158sylib 208 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
160153, 159eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = (𝑥(,)𝑦))
16198, 97, 101, 132, 160mvth 23755 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)))
162152fveq1d 6193 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
163162adantrr 753 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
164 fvres 6207 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
165164ad2antll 765 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
166163, 165eqtrd 2656 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
16710a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → Fun (ℝ D 𝐹))
16817ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
169155sseld 3602 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → 𝑎 ∈ (𝐴[,]𝐵)))
170169impr 649 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → 𝑎 ∈ (𝐴[,]𝐵))
171 funfvima2 6493 . . . . . . . . . . . . . . . . . 18 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝑎 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
172171imp 445 . . . . . . . . . . . . . . . . 17 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝑎 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
173167, 168, 170, 172syl21anc 1325 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
174166, 173eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
175 eleq1 2689 . . . . . . . . . . . . . . 15 (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ↔ ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
176174, 175syl5ibcom 235 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
177176expr 643 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
178177rexlimdv 3030 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
179161, 178mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
180125, 179eqeltrrd 2702 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
181 funfvima 6492 . . . . . . . . . . 11 ((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) → ((((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
182181imp 445 . . . . . . . . . 10 (((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
183110, 112, 180, 182syl21anc 1325 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
184 suprub 10984 . . . . . . . . 9 ((((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ ∧ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎) ∧ (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ))
185107, 108, 109, 183, 184syl31anc 1329 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ))
186185, 1syl6breqr 4695 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ 𝐾)
187106, 186eqbrtrrd 4677 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾)
18893abscld 14175 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ∈ ℝ)
18976ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℝ)
190100, 105absrpcld 14187 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℝ+)
191188, 189, 190ledivmuld 11925 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾 ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾)))
192187, 191mpbid 222 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾))
193190rpcnd 11874 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℂ)
194189recnd 10068 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℂ)
195193, 194mulcomd 10061 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘(𝑦𝑥)) · 𝐾) = (𝐾 · (abs‘(𝑦𝑥))))
196192, 195breqtrd 4679 . . . 4 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))
197196ex 450 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
198197ralrimivva 2971 . 2 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
19976, 198jca 554 1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  supcsup 8346  cc 9934  cr 9935   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  c1lip1  23760
  Copyright terms: Public domain W3C validator