| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((Cn‘𝑆)‘𝑛) = ((Cn‘𝑆)‘𝑀)) |
| 2 | 1 | sseq1d 3632 |
. . . . 5
⊢ (𝑛 = 𝑀 → (((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀) ↔ ((Cn‘𝑆)‘𝑀) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 3 | 2 | imbi2d 330 |
. . . 4
⊢ (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑀) ⊆ ((Cn‘𝑆)‘𝑀)))) |
| 4 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((Cn‘𝑆)‘𝑛) = ((Cn‘𝑆)‘𝑚)) |
| 5 | 4 | sseq1d 3632 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀) ↔ ((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 6 | 5 | imbi2d 330 |
. . . 4
⊢ (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀)))) |
| 7 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) →
((Cn‘𝑆)‘𝑛) = ((Cn‘𝑆)‘(𝑚 + 1))) |
| 8 | 7 | sseq1d 3632 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) →
(((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀) ↔ ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀))) |
| 9 | 8 | imbi2d 330 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀)))) |
| 10 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((Cn‘𝑆)‘𝑛) = ((Cn‘𝑆)‘𝑁)) |
| 11 | 10 | sseq1d 3632 |
. . . . 5
⊢ (𝑛 = 𝑁 → (((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀) ↔ ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 12 | 11 | imbi2d 330 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑛) ⊆ ((Cn‘𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀)))) |
| 13 | | ssid 3624 |
. . . . 5
⊢
((Cn‘𝑆)‘𝑀) ⊆ ((Cn‘𝑆)‘𝑀) |
| 14 | 13 | 2a1i 12 |
. . . 4
⊢ (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) → ((Cn‘𝑆)‘𝑀) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 15 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm
𝑆)) |
| 16 | | recnprss 23668 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ ℂ) |
| 18 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → 𝑆 ⊆ ℂ) |
| 19 | | simplll 798 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ}) |
| 20 | | eluznn0 11757 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑀)) → 𝑚 ∈ ℕ0) |
| 21 | 20 | adantll 750 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ ℕ0) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → 𝑚 ∈ ℕ0) |
| 23 | | dvnf 23690 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝑓 ∈ (ℂ
↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ) |
| 24 | 19, 15, 22, 23 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ) |
| 25 | | dvnbss 23691 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝑓 ∈ (ℂ
↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom
((𝑆 D𝑛
𝑓)‘𝑚) ⊆ dom 𝑓) |
| 26 | 19, 15, 22, 25 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓) |
| 27 | | dvnp1 23688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ
↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚))) |
| 28 | 18, 15, 22, 27 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚))) |
| 29 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ)) |
| 30 | 28, 29 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓–cn→ℂ)) |
| 31 | | cncff 22696 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓–cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ) |
| 33 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) |
| 35 | | cnex 10017 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ
∈ V |
| 36 | | elpm2g 7874 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
∈ V ∧ 𝑆 ∈
{ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm
𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ 𝑆))) |
| 37 | 35, 19, 36 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm
𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ 𝑆))) |
| 38 | 15, 37 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ 𝑆)) |
| 39 | 38 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom 𝑓 ⊆ 𝑆) |
| 40 | 26, 39 | sstrd 3613 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆) |
| 41 | 18, 24, 40 | dvbss 23665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚)) |
| 42 | 34, 41 | eqsstr3d 3640 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚)) |
| 43 | 26, 42 | eqssd 3620 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓) |
| 44 | 43 | feq2d 6031 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)) |
| 45 | 24, 44 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ) |
| 46 | | dvcn 23684 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ 𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ)) |
| 47 | 18, 45, 39, 34, 46 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ)) |
| 48 | 15, 47 | jca 554 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ))) |
| 49 | 48 | ex 450 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ)))) |
| 50 | | peano2nn0 11333 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
| 51 | 21, 50 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑚 + 1) ∈
ℕ0) |
| 52 | | elcpn 23697 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈
ℕ0) → (𝑓 ∈ ((Cn‘𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ)))) |
| 53 | 17, 51, 52 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑓 ∈ ((Cn‘𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓–cn→ℂ)))) |
| 54 | | elcpn 23697 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0)
→ (𝑓 ∈
((Cn‘𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ)))) |
| 55 | 17, 21, 54 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑓 ∈ ((Cn‘𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm
𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓–cn→ℂ)))) |
| 56 | 49, 53, 55 | 3imtr4d 283 |
. . . . . . . 8
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑓 ∈ ((Cn‘𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((Cn‘𝑆)‘𝑚))) |
| 57 | 56 | ssrdv 3609 |
. . . . . . 7
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) →
((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑚)) |
| 58 | | sstr2 3610 |
. . . . . . 7
⊢
(((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑚) → (((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀) → ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀))) |
| 59 | 57, 58 | syl 17 |
. . . . . 6
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) →
(((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀) → ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀))) |
| 60 | 59 | expcom 451 |
. . . . 5
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ (((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀) → ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀)))) |
| 61 | 60 | a2d 29 |
. . . 4
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑚) ⊆ ((Cn‘𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘(𝑚 + 1)) ⊆
((Cn‘𝑆)‘𝑀)))) |
| 62 | 3, 6, 9, 12, 14, 61 | uzind4 11746 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0)
→ ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 63 | 62 | com12 32 |
. 2
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0) → (𝑁 ∈ (ℤ≥‘𝑀) →
((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀))) |
| 64 | 63 | 3impia 1261 |
1
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝑀 ∈
ℕ0 ∧ 𝑁
∈ (ℤ≥‘𝑀)) → ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀)) |