MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxple2 Structured version   Visualization version   GIF version

Theorem cxple2 24443
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
cxple2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))

Proof of Theorem cxple2
StepHypRef Expression
1 simpl1l 1112 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 simpr 477 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 0 < 𝐴)
31, 2elrpd 11869 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
43adantr 481 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ+)
5 simp2l 1087 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
65ad2antrr 762 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 477 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
86, 7elrpd 11869 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
9 simp3 1063 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
109ad2antrr 762 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
11 simp3 1063 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
1211rpred 11872 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
13 relogcl 24322 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
14133ad2ant1 1082 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
1512, 14remulcld 10070 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ)
16 relogcl 24322 . . . . . . . 8 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
17163ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
1812, 17remulcld 10070 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ)
19 efle 14848 . . . . . 6 (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
2015, 18, 19syl2anc 693 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
21 efle 14848 . . . . . . 7 (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2214, 17, 21syl2anc 693 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2314, 17, 11lemul2d 11916 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
24 reeflog 24327 . . . . . . . 8 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
25243ad2ant1 1082 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴)
26 reeflog 24327 . . . . . . . 8 (𝐵 ∈ ℝ+ → (exp‘(log‘𝐵)) = 𝐵)
27263ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵)
2825, 27breq12d 4666 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴𝐵))
2922, 23, 283bitr3rd 299 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
30 rpre 11839 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
31303ad2ant1 1082 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
3231recnd 10068 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
33 rpne0 11848 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
34333ad2ant1 1082 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
3512recnd 10068 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
36 cxpef 24411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
3732, 34, 35, 36syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
38 rpre 11839 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
39383ad2ant2 1083 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
4039recnd 10068 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 rpne0 11848 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ≠ 0)
42413ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ≠ 0)
43 cxpef 24411 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4440, 42, 35, 43syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4537, 44breq12d 4666 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
4620, 29, 453bitr4d 300 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
474, 8, 10, 46syl3anc 1326 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
48 0re 10040 . . . . . . . 8 0 ∈ ℝ
49 simp1l 1085 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
50 ltnle 10117 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5148, 49, 50sylancr 695 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5251biimpa 501 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ 𝐴 ≤ 0)
539rpred 11872 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
5453adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
55 rpcxpcl 24422 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴𝑐𝐶) ∈ ℝ+)
563, 54, 55syl2anc 693 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝑐𝐶) ∈ ℝ+)
57 rpgt0 11844 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → 0 < (𝐴𝑐𝐶))
58 rpre 11839 . . . . . . . . . 10 ((𝐴𝑐𝐶) ∈ ℝ+ → (𝐴𝑐𝐶) ∈ ℝ)
59 ltnle 10117 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐴𝑐𝐶) ∈ ℝ) → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6048, 58, 59sylancr 695 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6157, 60mpbid 222 . . . . . . . 8 ((𝐴𝑐𝐶) ∈ ℝ+ → ¬ (𝐴𝑐𝐶) ≤ 0)
6256, 61syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ 0)
6353recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
649rpne0d 11877 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
65 0cxp 24412 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0)
6663, 64, 65syl2anc 693 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0↑𝑐𝐶) = 0)
6766adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0↑𝑐𝐶) = 0)
6867breq2d 4665 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ 0))
6962, 68mtbird 315 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶))
7052, 692falsed 366 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)))
71 breq2 4657 . . . . . 6 (0 = 𝐵 → (𝐴 ≤ 0 ↔ 𝐴𝐵))
72 oveq1 6657 . . . . . . 7 (0 = 𝐵 → (0↑𝑐𝐶) = (𝐵𝑐𝐶))
7372breq2d 4665 . . . . . 6 (0 = 𝐵 → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
7471, 73bibi12d 335 . . . . 5 (0 = 𝐵 → ((𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)) ↔ (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7570, 74syl5ibcom 235 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 = 𝐵 → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7675imp 445 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
77 simp2r 1088 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐵)
78 leloe 10124 . . . . . 6 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
7948, 5, 78sylancr 695 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
8077, 79mpbid 222 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐵 ∨ 0 = 𝐵))
8180adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
8247, 76, 81mpjaodan 827 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
83 simpr 477 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = 𝐴)
84 simpl2r 1115 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ 𝐵)
8583, 84eqbrtrrd 4677 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐴𝐵)
8666adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = 0)
8783oveq1d 6665 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = (𝐴𝑐𝐶))
8886, 87eqtr3d 2658 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = (𝐴𝑐𝐶))
89 simpl2l 1114 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ)
9053adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ)
91 cxpge0 24429 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐶 ∈ ℝ) → 0 ≤ (𝐵𝑐𝐶))
9289, 84, 90, 91syl3anc 1326 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ (𝐵𝑐𝐶))
9388, 92eqbrtrrd 4677 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
9485, 932thd 255 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
95 simp1r 1086 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐴)
96 leloe 10124 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9748, 49, 96sylancr 695 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9895, 97mpbid 222 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ∨ 0 = 𝐴))
9982, 94, 98mpjaodan 827 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941   < clt 10074  cle 10075  +crp 11832  expce 14792  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  cxplt2  24444  cxple2a  24445  cxple2d  24473
  Copyright terms: Public domain W3C validator