![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvbdfbdioo | Structured version Visualization version GIF version |
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvbdfbdioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvbdfbdioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvbdfbdioo.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
dvbdfbdioo.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
dvbdfbdioo.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvbdfbdioo.dvbd | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) |
Ref | Expression |
---|---|
dvbdfbdioo | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
2 | dvbdfbdioo.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 10089 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | dvbdfbdioo.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 10089 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 2, 4 | readdcld 10069 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 11279 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
8 | dvbdfbdioo.altb | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | avglt1 11270 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) | |
10 | 2, 4, 9 | syl2anc 693 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) |
11 | 8, 10 | mpbid 222 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < ((𝐴 + 𝐵) / 2)) |
12 | avglt2 11271 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) | |
13 | 2, 4, 12 | syl2anc 693 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) |
14 | 8, 13 | mpbid 222 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵) |
15 | 3, 5, 7, 11, 14 | eliood 39720 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
16 | 1, 15 | ffvelrnd 6360 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
17 | 16 | recnd 10068 | . . . . . 6 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
18 | 17 | abscld 14175 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
19 | 18 | ad2antrr 762 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
20 | simplr 792 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ) | |
21 | 4 | ad2antrr 762 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ) |
22 | 2 | ad2antrr 762 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ) |
23 | 21, 22 | resubcld 10458 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵 − 𝐴) ∈ ℝ) |
24 | 20, 23 | remulcld 10070 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵 − 𝐴)) ∈ ℝ) |
25 | 19, 24 | readdcld 10069 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ) |
26 | 8 | ad2antrr 762 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵) |
27 | 1 | ad2antrr 762 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | dvbdfbdioo.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
29 | 28 | ad2antrr 762 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑦)) | |
31 | 30 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦))) |
32 | 31 | breq1d 4663 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)) |
33 | 32 | cbvralv 3171 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
34 | 33 | biimpi 206 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
35 | 34 | adantl 482 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
36 | eqid 2622 | . . . 4 ⊢ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) | |
37 | 22, 21, 26, 27, 29, 20, 35, 36 | dvbdfbdioolem2 40144 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) |
38 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
39 | 38 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑦))) |
40 | 39 | breq1d 4663 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑏)) |
41 | 40 | cbvralv 3171 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏) |
42 | breq2 4657 | . . . . . 6 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → ((abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) | |
43 | 42 | ralbidv 2986 | . . . . 5 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
44 | 41, 43 | syl5bb 272 | . . . 4 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
45 | 44 | rspcev 3309 | . . 3 ⊢ ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
46 | 25, 37, 45 | syl2anc 693 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
47 | dvbdfbdioo.dvbd | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) | |
48 | 46, 47 | r19.29a 3078 | 1 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 2c2 11070 (,)cioo 12175 abscabs 13974 D cdv 23627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 |
This theorem is referenced by: ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 |
Copyright terms: Public domain | W3C validator |