![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodcnlem | Structured version Visualization version GIF version |
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodcnlem.1 | ⊢ Ⅎ𝑘𝜑 |
fprodcnlem.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fprodcnlem.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fprodcnlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodcnlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
fprodcnlem.z | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
fprodcnlem.w | ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
fprodcnlem.p | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
fprodcnlem | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnlem.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑘 𝑥 ∈ 𝑋 | |
3 | 1, 2 | nfan 1828 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
4 | nfcsb1v 3549 | . . . 4 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 | |
5 | fprodcnlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fprodcnlem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
7 | 5, 6 | ssfid 8183 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Fin) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ Fin) |
9 | fprodcnlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
11 | 10 | eldifbd 3587 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑊 ∈ 𝑍) |
12 | 6 | sselda 3603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
13 | 12 | adantlr 751 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
14 | fprodcnlem.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | 14 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
16 | fprodcnlem.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 22586 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘ℂ)) |
19 | fprodcnlem.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) | |
20 | cnf2 21053 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | |
21 | 15, 18, 19, 20 | syl3anc 1326 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
22 | eqid 2622 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
23 | 22 | fmpt 6381 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
24 | 21, 23 | sylibr 224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
25 | 24 | adantlr 751 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
26 | simplr 792 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ 𝑋) | |
27 | rspa 2930 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | |
28 | 25, 26, 27 | syl2anc 693 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
29 | 13, 28 | syldan 487 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
30 | csbeq1a 3542 | . . . 4 ⊢ (𝑘 = 𝑊 → 𝐵 = ⦋𝑊 / 𝑘⦌𝐵) | |
31 | 10 | eldifad 3586 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ 𝐴) |
32 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → 𝑊 ∈ 𝐴) | |
33 | nfcv 2764 | . . . . . . 7 ⊢ Ⅎ𝑘𝑊 | |
34 | nfv 1843 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑊 ∈ 𝐴 | |
35 | 3, 34 | nfan 1828 | . . . . . . . 8 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) |
36 | 4 | nfel1 2779 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ |
37 | 35, 36 | nfim 1825 | . . . . . . 7 ⊢ Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
38 | eleq1 2689 | . . . . . . . . 9 ⊢ (𝑘 = 𝑊 → (𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴)) | |
39 | 38 | anbi2d 740 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴))) |
40 | 30 | eleq1d 2686 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
41 | 39, 40 | imbi12d 334 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ))) |
42 | 33, 37, 41, 28 | vtoclgf 3264 | . . . . . 6 ⊢ (𝑊 ∈ 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
43 | 32, 42 | mpcom 38 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
44 | 31, 43 | mpdan 702 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
45 | 3, 4, 8, 10, 11, 29, 30, 44 | fprodsplitsn 14720 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) |
46 | 45 | mpteq2dva 4744 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵))) |
47 | fprodcnlem.p | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) | |
48 | 9 | eldifad 3586 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
49 | 1, 34 | nfan 1828 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑊 ∈ 𝐴) |
50 | nfcv 2764 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑋 | |
51 | 50, 4 | nfmpt 4746 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) |
52 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐽 Cn 𝐾) | |
53 | 51, 52 | nfel 2777 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
54 | 49, 53 | nfim 1825 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
55 | 38 | anbi2d 740 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑊 ∈ 𝐴))) |
56 | 30 | mpteq2dv 4745 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵)) |
57 | 56 | eleq1d 2686 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
58 | 55, 57 | imbi12d 334 | . . . . . 6 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)))) |
59 | 19 | idi 2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
60 | 33, 54, 58, 59 | vtoclgf 3264 | . . . . 5 ⊢ (𝑊 ∈ 𝐴 → ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
61 | 60 | anabsi7 860 | . . . 4 ⊢ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
62 | 48, 61 | mpdan 702 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
63 | 16 | mulcn 22670 | . . . 4 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
64 | 63 | a1i 11 | . . 3 ⊢ (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
65 | 14, 47, 62, 64 | cnmpt12f 21469 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
66 | 46, 65 | eqeltrd 2701 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 ⦋csb 3533 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 {csn 4177 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ℂcc 9934 · cmul 9941 ∏cprod 14635 TopOpenctopn 16082 ℂfldccnfld 19746 TopOnctopon 20715 Cn ccn 21028 ×t ctx 21363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-hmeo 21558 df-xms 22125 df-ms 22126 df-tms 22127 |
This theorem is referenced by: fprodcn 39832 |
Copyright terms: Public domain | W3C validator |