Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl Structured version   Visualization version   GIF version

Theorem hoimbl 40845
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoimbl.x (𝜑𝑋 ∈ Fin)
hoimbl.s 𝑆 = dom (voln‘𝑋)
hoimbl.a (𝜑𝐴:𝑋⟶ℝ)
hoimbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoimbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑆,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem hoimbl
Dummy variables 𝑥 𝑙 𝑦 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoimbl.x . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 481 . . . 4 ((𝜑𝑋 = ∅) → 𝑋 ∈ Fin)
32rrnmbl 40828 . . 3 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋))
4 reex 10027 . . . . . . . . 9 ℝ ∈ V
5 mapdm0 7872 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
64, 5ax-mp 5 . . . . . . . 8 (ℝ ↑𝑚 ∅) = {∅}
76eqcomi 2631 . . . . . . 7 {∅} = (ℝ ↑𝑚 ∅)
87a1i 11 . . . . . 6 (𝑋 = ∅ → {∅} = (ℝ ↑𝑚 ∅))
9 id 22 . . . . . . . 8 (𝑋 = ∅ → 𝑋 = ∅)
109ixpeq1d 7920 . . . . . . 7 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)))
11 ixp0x 7936 . . . . . . . 8 X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅}
1211a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
1310, 12eqtrd 2656 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = {∅})
14 oveq2 6658 . . . . . 6 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
158, 13, 143eqtr4d 2666 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑𝑚 𝑋))
1615adantl 482 . . . 4 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = (ℝ ↑𝑚 𝑋))
17 hoimbl.s . . . . 5 𝑆 = dom (voln‘𝑋)
1817a1i 11 . . . 4 ((𝜑𝑋 = ∅) → 𝑆 = dom (voln‘𝑋))
1916, 18eleq12d 2695 . . 3 ((𝜑𝑋 = ∅) → (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆 ↔ (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋)))
203, 19mpbird 247 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
211adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
229necon3bi 2820 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 hoimbl.a . . . 4 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
26 hoimbl.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
2726adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
28 id 22 . . . . . 6 (𝑤 = 𝑥𝑤 = 𝑥)
29 eqidd 2623 . . . . . 6 (𝑤 = 𝑥 → ℝ = ℝ)
3028ixpeq1d 7920 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ))
31 eqeq1 2626 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝑖 = ))
3231ifbid 4108 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = , (-∞(,)𝑧), ℝ) = if(𝑖 = , (-∞(,)𝑧), ℝ))
3332cbvixpv 7926 . . . . . . . 8 X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)
3433a1i 11 . . . . . . 7 (𝑤 = 𝑥X𝑗𝑥 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3530, 34eqtrd 2656 . . . . . 6 (𝑤 = 𝑥X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ))
3628, 29, 35mpt2eq123dv 6717 . . . . 5 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)))
37 eqeq2 2633 . . . . . . . . 9 ( = 𝑙 → (𝑖 = 𝑖 = 𝑙))
3837ifbid 4108 . . . . . . . 8 ( = 𝑙 → if(𝑖 = , (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
3938ixpeq2dv 7924 . . . . . . 7 ( = 𝑙X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ))
40 oveq2 6658 . . . . . . . . 9 (𝑧 = 𝑦 → (-∞(,)𝑧) = (-∞(,)𝑦))
4140ifeq1d 4104 . . . . . . . 8 (𝑧 = 𝑦 → if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4241ixpeq2dv 7924 . . . . . . 7 (𝑧 = 𝑦X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑧), ℝ) = X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4339, 42cbvmpt2v 6735 . . . . . 6 (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))
4443a1i 11 . . . . 5 (𝑤 = 𝑥 → (𝑥, 𝑧 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4536, 44eqtrd 2656 . . . 4 (𝑤 = 𝑥 → (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4645cbvmptv 4750 . . 3 (𝑤 ∈ Fin ↦ (𝑤, 𝑧 ∈ ℝ ↦ X𝑗𝑤 if(𝑗 = , (-∞(,)𝑧), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
4721, 23, 17, 25, 27, 46hoimbllem 40844 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
4820, 47pm2.61dan 832 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  cr 9935  -∞cmnf 10072  (,)cioo 12175  [,)cico 12177  volncvoln 40752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-salg 40529  df-sumge0 40580  df-mea 40667  df-ome 40704  df-caragen 40706  df-ovoln 40751  df-voln 40753
This theorem is referenced by:  opnvonmbllem2  40847  hoimbl2  40879  vonhoi  40881  vonioolem1  40894  vonioolem2  40895  vonicclem1  40897  vonicclem2  40898
  Copyright terms: Public domain W3C validator