Proof of Theorem vonicclem1
| Step | Hyp | Ref
| Expression |
| 1 | | vonicclem1.s |
. . . 4
⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛)))) |
| 3 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 4 | | vonicclem1.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
| 5 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
| 6 | | vonicclem1.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
| 8 | | eqid 2622 |
. . . . . . . . . . 11
⊢ dom
(voln‘𝑋) = dom
(voln‘𝑋) |
| 9 | | vonicclem1.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 10 | 9 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ) |
| 11 | | vonicclem1.b |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 12 | 11 | ffvelrnda 6359 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 13 | 12 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 14 | | nnrecre 11057 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
| 15 | 14 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
| 16 | 13, 15 | readdcld 10069 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
| 17 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) |
| 18 | 16, 17 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ) |
| 19 | | vonicclem1.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))))) |
| 21 | 6 | mptexd 6487 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
| 23 | 20, 22 | fvmpt2d 6293 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
| 24 | 23 | feq1d 6030 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ)) |
| 25 | 18, 24 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
| 26 | 7, 8, 10, 25 | hoimbl 40845 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ dom (voln‘𝑋)) |
| 27 | 26 | elexd 3214 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ V) |
| 28 | 5, 27 | fvmpt2d 6293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
| 29 | 3, 28 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
| 30 | 29 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
| 31 | | vonicclem1.u |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅) |
| 33 | 3, 25 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
| 34 | | eqid 2622 |
. . . . . . 7
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) |
| 35 | 7, 32, 10, 33, 34 | vonn0hoi 40884 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
| 36 | 10 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 37 | 3, 36 | syldanl 735 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 38 | 33 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) ∈ ℝ) |
| 39 | | volico 40200 |
. . . . . . . . 9
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ ((𝐶‘𝑛)‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0)) |
| 40 | 37, 38, 39 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0)) |
| 41 | 3, 13 | syldanl 735 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 42 | | vonicclem1.t |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
| 43 | 42 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
| 44 | | nnrp 11842 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
| 45 | 44 | rpreccld 11882 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
| 46 | 45 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
| 47 | 41, 46 | ltaddrpd 11905 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) < ((𝐵‘𝑘) + (1 / 𝑛))) |
| 48 | 16 | elexd 3214 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ V) |
| 49 | 23, 48 | fvmpt2d 6293 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐵‘𝑘) + (1 / 𝑛))) |
| 50 | 3, 49 | syldanl 735 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐵‘𝑘) + (1 / 𝑛))) |
| 51 | 47, 50 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) < ((𝐶‘𝑛)‘𝑘)) |
| 52 | 37, 41, 38, 43, 51 | lelttrd 10195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘)) |
| 53 | 52 | iftrued 4094 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0) = (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
| 54 | 40, 53 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
| 55 | 54 | prodeq2dv 14653 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
| 56 | 30, 35, 55 | 3eqtrd 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
| 57 | 49 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = (((𝐵‘𝑘) + (1 / 𝑛)) − (𝐴‘𝑘))) |
| 58 | 13 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℂ) |
| 59 | 15 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℂ) |
| 60 | 36 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℂ) |
| 61 | 58, 59, 60 | addsubd 10413 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐵‘𝑘) + (1 / 𝑛)) − (𝐴‘𝑘)) = (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
| 62 | 57, 61 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
| 63 | 62 | prodeq2dv 14653 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
| 64 | 56, 63 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
| 65 | 64 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛)))) |
| 66 | 2, 65 | eqtrd 2656 |
. 2
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛)))) |
| 67 | | nfv 1843 |
. . 3
⊢
Ⅎ𝑘𝜑 |
| 68 | 9 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 69 | 12, 68 | resubcld 10458 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℝ) |
| 70 | 69 | recnd 10068 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℂ) |
| 71 | | eqid 2622 |
. . 3
⊢ (𝑛 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
| 72 | 67, 6, 70, 71 | fprodaddrecnncnv 40124 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 73 | 66, 72 | eqbrtrd 4675 |
1
⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |