Step | Hyp | Ref
| Expression |
1 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
2 | | vonicclem2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
3 | 2 | vonmea 40788 |
. . . 4
⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
4 | | 1zzd 11408 |
. . . 4
⊢ (𝜑 → 1 ∈
ℤ) |
5 | | nnuz 11723 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
6 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
7 | | eqid 2622 |
. . . . . 6
⊢ dom
(voln‘𝑋) = dom
(voln‘𝑋) |
8 | | vonicclem2.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
9 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ) |
10 | | vonicclem2.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
11 | 10 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
12 | 11 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
13 | | nnrecre 11057 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
14 | 13 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
15 | 12, 14 | readdcld 10069 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
16 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) |
17 | 15, 16 | fmptd 6385 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ) |
18 | | vonicclem2.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))))) |
20 | 2 | mptexd 6487 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
21 | 20 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
22 | 19, 21 | fvmpt2d 6293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
23 | 22 | feq1d 6030 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ)) |
24 | 17, 23 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
25 | 6, 7, 9, 24 | hoimbl 40845 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ dom (voln‘𝑋)) |
26 | | vonicclem2.d |
. . . . 5
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
27 | 25, 26 | fmptd 6385 |
. . . 4
⊢ (𝜑 → 𝐷:ℕ⟶dom (voln‘𝑋)) |
28 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ ℕ) |
29 | | ressxr 10083 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
30 | 8 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
31 | 29, 30 | sseldi 3601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈
ℝ*) |
32 | 31 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈
ℝ*) |
33 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ V) |
34 | 22, 33 | fvmpt2d 6293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐵‘𝑘) + (1 / 𝑛))) |
35 | 34, 15 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) ∈ ℝ) |
36 | 35 | rexrd 10089 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) ∈
ℝ*) |
37 | 9 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
38 | 37 | leidd 10594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐴‘𝑘)) |
39 | | 1red 10055 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ) |
40 | | nnre 11027 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
41 | 40, 39 | readdcld 10069 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ) |
42 | | peano2nn 11032 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
43 | | nnne0 11053 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ ℕ →
(𝑛 + 1) ≠
0) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0) |
45 | 39, 41, 44 | redivcld 10853 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) ∈
ℝ) |
46 | 45 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / (𝑛 + 1)) ∈ ℝ) |
47 | 40 | ltp1d 10954 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1)) |
48 | | nnrp 11842 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
49 | 42 | nnrpd 11870 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ+) |
50 | 48, 49 | ltrecd 11890 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛))) |
51 | 47, 50 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) < (1 / 𝑛)) |
52 | 45, 13, 51 | ltled 10185 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) ≤ (1 / 𝑛)) |
53 | 52 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛)) |
54 | 46, 14, 12, 53 | leadd2dd 10642 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵‘𝑘) + (1 / 𝑛))) |
55 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
56 | 55 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ((𝐵‘𝑘) + (1 / 𝑛)) = ((𝐵‘𝑘) + (1 / 𝑚))) |
57 | 56 | mpteq2dv 4745 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚)))) |
58 | 57 | cbvmptv 4750 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚)))) |
59 | 18, 58 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚)))) |
60 | 59 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚))))) |
61 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1))) |
62 | 61 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → ((𝐵‘𝑘) + (1 / 𝑚)) = ((𝐵‘𝑘) + (1 / (𝑛 + 1)))) |
63 | 62 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / (𝑛 + 1))))) |
64 | 63 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / (𝑛 + 1))))) |
65 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
66 | 65 | peano2nnd 11037 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
67 | 6 | mptexd 6487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / (𝑛 + 1)))) ∈ V) |
68 | 60, 64, 66, 67 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / (𝑛 + 1))))) |
69 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / (𝑛 + 1))) ∈ V) |
70 | 68, 69 | fvmpt2d 6293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵‘𝑘) + (1 / (𝑛 + 1)))) |
71 | 70, 34 | breq12d 4666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘) ↔ ((𝐵‘𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵‘𝑘) + (1 / 𝑛)))) |
72 | 54, 71 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘)) |
73 | | icossico 12243 |
. . . . . . 7
⊢ ((((𝐴‘𝑘) ∈ ℝ* ∧ ((𝐶‘𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴‘𝑘) ≤ (𝐴‘𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘))) → ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
74 | 32, 36, 38, 72, 73 | syl22anc 1327 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
75 | 28, 74 | ixpssixp 39269 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
76 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝐶‘𝑛) = (𝐶‘𝑚)) |
77 | 76 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘)) |
78 | 77 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘))) |
79 | 78 | ixpeq2dv 7924 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘))) |
80 | 79 | cbvmptv 4750 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘))) |
81 | 26, 80 | eqtri 2644 |
. . . . . . . 8
⊢ 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘))) |
82 | 81 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘)))) |
83 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → (𝐶‘𝑚) = (𝐶‘(𝑛 + 1))) |
84 | 83 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → ((𝐶‘𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘)) |
85 | 84 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘)) = ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘))) |
86 | 85 | ixpeq2dv 7924 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘))) |
87 | 86 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑚)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘))) |
88 | | ovex 6678 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V |
89 | 88 | rgenw 2924 |
. . . . . . . . 9
⊢
∀𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V |
90 | | ixpexg 7932 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V) |
91 | 89, 90 | ax-mp 5 |
. . . . . . . 8
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V |
92 | 91 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V) |
93 | 82, 87, 66, 92 | fvmptd 6288 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘))) |
94 | 26 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
95 | 25 | elexd 3214 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ V) |
96 | 94, 95 | fvmpt2d 6293 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
97 | 93, 96 | sseq12d 3634 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷‘𝑛) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
98 | 75, 97 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷‘𝑛)) |
99 | | 1nn 11031 |
. . . . . 6
⊢ 1 ∈
ℕ |
100 | 99, 5 | eleqtri 2699 |
. . . . 5
⊢ 1 ∈
(ℤ≥‘1) |
101 | 100 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
(ℤ≥‘1)) |
102 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (𝐶‘𝑛) = (𝐶‘1)) |
103 | 102 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘1)‘𝑘)) |
104 | 103 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑛 = 1 → ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘))) |
105 | 104 | ixpeq2dv 7924 |
. . . . . . . 8
⊢ (𝑛 = 1 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘))) |
106 | 105 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = 1) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘))) |
107 | 99 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ) |
108 | | ovex 6678 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V |
109 | 108 | rgenw 2924 |
. . . . . . . . 9
⊢
∀𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V |
110 | | ixpexg 7932 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V) |
111 | 109, 110 | ax-mp 5 |
. . . . . . . 8
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V |
112 | 111 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V) |
113 | 94, 106, 107, 112 | fvmptd 6288 |
. . . . . 6
⊢ (𝜑 → (𝐷‘1) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘))) |
114 | 113 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘)))) |
115 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
116 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝜑) |
117 | 99 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 1 ∈ ℕ) |
118 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
119 | 99 | elexi 3213 |
. . . . . . . 8
⊢ 1 ∈
V |
120 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈
ℕ)) |
121 | 120 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 ∧ 𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ))) |
122 | 121 | anbi1d 741 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘 ∈ 𝑋))) |
123 | 103 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (((𝐶‘𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ)) |
124 | 122, 123 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ))) |
125 | 119, 124,
35 | vtocl 3259 |
. . . . . . 7
⊢ (((𝜑 ∧ 1 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ) |
126 | 116, 117,
118, 125 | syl21anc 1325 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ) |
127 | 115, 2, 30, 126 | vonhoire 40886 |
. . . . 5
⊢ (𝜑 → ((voln‘𝑋)‘X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ) |
128 | 114, 127 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ) |
129 | | eqid 2622 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
130 | 1, 3, 4, 5, 27, 98, 101, 128, 129 | meaiininc 40701 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘∩
𝑛 ∈ ℕ (𝐷‘𝑛))) |
131 | 115, 30, 11 | iinhoiicc 40888 |
. . . . . . 7
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐵‘𝑘) + (1 / 𝑛))) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
132 | 34 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = ((𝐴‘𝑘)[,)((𝐵‘𝑘) + (1 / 𝑛)))) |
133 | 132 | ixpeq2dva 7923 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐵‘𝑘) + (1 / 𝑛)))) |
134 | 96, 133 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐵‘𝑘) + (1 / 𝑛)))) |
135 | 134 | iineq2dv 4543 |
. . . . . . 7
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐷‘𝑛) = ∩ 𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐵‘𝑘) + (1 / 𝑛)))) |
136 | | vonicclem2.i |
. . . . . . . 8
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) |
137 | 136 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
138 | 131, 135,
137 | 3eqtr4d 2666 |
. . . . . 6
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐷‘𝑛) = 𝐼) |
139 | 138 | eqcomd 2628 |
. . . . 5
⊢ (𝜑 → 𝐼 = ∩ 𝑛 ∈ ℕ (𝐷‘𝑛)) |
140 | 139 | fveq2d 6195 |
. . . 4
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∩
𝑛 ∈ ℕ (𝐷‘𝑛))) |
141 | 140 | eqcomd 2628 |
. . 3
⊢ (𝜑 → ((voln‘𝑋)‘∩ 𝑛 ∈ ℕ (𝐷‘𝑛)) = ((voln‘𝑋)‘𝐼)) |
142 | 130, 141 | breqtrd 4679 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘𝐼)) |
143 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝐷‘𝑛) = (𝐷‘𝑚)) |
144 | 143 | fveq2d 6195 |
. . . . 5
⊢ (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷‘𝑛)) = ((voln‘𝑋)‘(𝐷‘𝑚))) |
145 | 144 | cbvmptv 4750 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚))) |
146 | 145 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚)))) |
147 | | vonicclem2.n |
. . . 4
⊢ (𝜑 → 𝑋 ≠ ∅) |
148 | | vonicclem2.t |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
149 | 145 | eqcomi 2631 |
. . . 4
⊢ (𝑚 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
150 | 2, 8, 10, 147, 148, 18, 26, 149 | vonicclem1 40897 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
151 | 146, 150 | eqbrtrd 4675 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
152 | | climuni 14283 |
. 2
⊢ (((𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
153 | 142, 151,
152 | syl2anc 693 |
1
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |