| Step | Hyp | Ref
| Expression |
| 1 | | hspmbl.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 2 | 1 | ovnome 40787 |
. . 3
⊢ (𝜑 → (voln*‘𝑋) ∈
OutMeas) |
| 3 | | eqid 2622 |
. . 3
⊢ ∪ dom (voln*‘𝑋) = ∪ dom
(voln*‘𝑋) |
| 4 | | eqid 2622 |
. . 3
⊢
(CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) |
| 5 | | ovex 6678 |
. . . . . . . . 9
⊢
(-∞(,)𝑌)
∈ V |
| 6 | | reex 10027 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 7 | 5, 6 | ifex 4156 |
. . . . . . . 8
⊢ if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
| 8 | 7 | ixpssmap 7942 |
. . . . . . 7
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑𝑚 𝑋) |
| 9 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
| 10 | | ioossre 12235 |
. . . . . . . . . . . . 13
⊢
(-∞(,)𝑌)
⊆ ℝ |
| 11 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ) |
| 12 | 9, 11 | eqsstrd 3639 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
| 13 | | iffalse 4095 |
. . . . . . . . . . . 12
⊢ (¬
𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ) |
| 14 | | ssid 3624 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
𝑝 = 𝐾 → ℝ ⊆
ℝ) |
| 16 | 13, 15 | eqsstrd 3639 |
. . . . . . . . . . 11
⊢ (¬
𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
| 17 | 12, 16 | pm2.61i 176 |
. . . . . . . . . 10
⊢ if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
| 18 | 17 | rgenw 2924 |
. . . . . . . . 9
⊢
∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
| 19 | | iunss 4561 |
. . . . . . . . 9
⊢ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔
∀𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
| 20 | 18, 19 | mpbir 221 |
. . . . . . . 8
⊢ ∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
| 21 | | mapss 7900 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ ∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) →
(∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑𝑚 𝑋) ⊆ (ℝ
↑𝑚 𝑋)) |
| 22 | 6, 20, 21 | mp2an 708 |
. . . . . . 7
⊢ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑𝑚 𝑋) ⊆ (ℝ
↑𝑚 𝑋) |
| 23 | 8, 22 | sstri 3612 |
. . . . . 6
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑𝑚 𝑋) |
| 24 | 7 | rgenw 2924 |
. . . . . . . 8
⊢
∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
| 25 | | ixpexg 7932 |
. . . . . . . 8
⊢
(∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
| 27 | | elpwg 4166 |
. . . . . . 7
⊢ (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑𝑚 𝑋))) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . 6
⊢ (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑𝑚 𝑋)) |
| 29 | 23, 28 | mpbir 221 |
. . . . 5
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑𝑚 𝑋) |
| 30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑𝑚 𝑋)) |
| 31 | | hspmbl.1 |
. . . . . . 7
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 32 | | equid 1939 |
. . . . . . . . 9
⊢ 𝑥 = 𝑥 |
| 33 | | eqid 2622 |
. . . . . . . . 9
⊢ ℝ =
ℝ |
| 34 | | equequ1 1952 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑝 → (𝑘 = 𝑙 ↔ 𝑝 = 𝑙)) |
| 35 | 34 | ifbid 4108 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 36 | 35 | cbvixpv 7926 |
. . . . . . . . 9
⊢ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝 ∈ 𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ) |
| 37 | 32, 33, 36 | mpt2eq123i 6718 |
. . . . . . . 8
⊢ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)) |
| 38 | 37 | mpteq2i 4741 |
. . . . . . 7
⊢ (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 39 | 31, 38 | eqtri 2644 |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))) |
| 40 | | hspmbl.i |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| 41 | | hspmbl.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 42 | 39, 1, 40, 41 | hspval 40823 |
. . . . 5
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) = X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ)) |
| 43 | 1 | ovnf 40777 |
. . . . . . . . 9
⊢ (𝜑 → (voln*‘𝑋):𝒫 (ℝ
↑𝑚 𝑋)⟶(0[,]+∞)) |
| 44 | | fdm 6051 |
. . . . . . . . 9
⊢
((voln*‘𝑋):𝒫 (ℝ
↑𝑚 𝑋)⟶(0[,]+∞) → dom
(voln*‘𝑋) = 𝒫
(ℝ ↑𝑚 𝑋)) |
| 45 | 43, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ
↑𝑚 𝑋)) |
| 46 | 45 | unieqd 4446 |
. . . . . . 7
⊢ (𝜑 → ∪ dom (voln*‘𝑋) = ∪ 𝒫
(ℝ ↑𝑚 𝑋)) |
| 47 | | unipw 4918 |
. . . . . . . 8
⊢ ∪ 𝒫 (ℝ ↑𝑚 𝑋) = (ℝ
↑𝑚 𝑋) |
| 48 | 47 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝒫 (ℝ ↑𝑚 𝑋) = (ℝ
↑𝑚 𝑋)) |
| 49 | 46, 48 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑𝑚
𝑋)) |
| 50 | 49 | pweqd 4163 |
. . . . 5
⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ
↑𝑚 𝑋)) |
| 51 | 42, 50 | eleq12d 2695 |
. . . 4
⊢ (𝜑 → ((𝐾(𝐻‘𝑋)𝑌) ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑𝑚 𝑋))) |
| 52 | 30, 51 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
| 53 | | simpl 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝜑) |
| 54 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
| 55 | 53, 50 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ
↑𝑚 𝑋)) |
| 56 | 54, 55 | eleqtrd 2703 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) |
| 57 | 1 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → 𝑋 ∈ Fin) |
| 58 | | inss1 3833 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝑎 |
| 59 | 58 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) → (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝑎) |
| 60 | | elpwi 4168 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) → 𝑎 ⊆ (ℝ ↑𝑚
𝑋)) |
| 61 | 59, 60 | sstrd 3613 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) → (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 62 | 61 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 63 | 57, 62 | ovnxrcl 40783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈
ℝ*) |
| 64 | 60 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → 𝑎 ⊆ (ℝ ↑𝑚
𝑋)) |
| 65 | 64 | ssdifssd 3748 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → (𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 66 | 57, 65 | ovnxrcl 40783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈
ℝ*) |
| 67 | 63, 66 | xaddcld 12131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈
ℝ*) |
| 68 | | pnfge 11964 |
. . . . . . . 8
⊢
((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ* →
(((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
| 69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
| 70 | 69 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
| 71 | | id 22 |
. . . . . . . 8
⊢
(((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞) |
| 72 | 71 | eqcomd 2628 |
. . . . . . 7
⊢
(((voln*‘𝑋)‘𝑎) = +∞ → +∞ =
((voln*‘𝑋)‘𝑎)) |
| 73 | 72 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → +∞ =
((voln*‘𝑋)‘𝑎)) |
| 74 | 70, 73 | breqtrd 4679 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
| 75 | | simpl 473 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋))) |
| 76 | 57, 64 | ovncl 40781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞)) |
| 77 | 76 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞)) |
| 78 | | neqne 2802 |
. . . . . . . 8
⊢ (¬
((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞) |
| 79 | 78 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞) |
| 80 | | ge0xrre 39758 |
. . . . . . 7
⊢
((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧
((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
| 81 | 77, 79, 80 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
| 82 | 57 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin) |
| 83 | 40 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾 ∈ 𝑋) |
| 84 | 41 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ) |
| 85 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
| 86 | 64 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑𝑚
𝑋)) |
| 87 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝) ↔ 𝑏 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝))) |
| 88 | 87 | rabbidv 3189 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
| 89 | 88 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
| 90 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → 𝑖 = ℎ) |
| 91 | 90 | coeq2d 5284 |
. . . . . . . . . . 11
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ℎ)) |
| 92 | 91 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ ℎ)‘𝑝)) |
| 93 | 92 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ ℎ)‘𝑝))) |
| 94 | 93 | prodeq2dv 14653 |
. . . . . . . 8
⊢ (𝑖 = ℎ → ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑝))) |
| 95 | 94 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑖 ∈ ((ℝ ×
ℝ) ↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = (ℎ ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑝))) |
| 96 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑝 → (([,) ∘ (𝑚‘𝑖))‘𝑛) = (([,) ∘ (𝑚‘𝑖))‘𝑝)) |
| 97 | 96 | cbvixpv 7926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝) |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = ℎ → X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝)) |
| 99 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = ℎ → (𝑚‘𝑖) = (ℎ‘𝑖)) |
| 100 | 99 | coeq2d 5284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = ℎ → ([,) ∘ (𝑚‘𝑖)) = ([,) ∘ (ℎ‘𝑖))) |
| 101 | 100 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = ℎ → (([,) ∘ (𝑚‘𝑖))‘𝑝) = (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
| 102 | 101 | ixpeq2dv 7924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = ℎ → X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
| 103 | 98, 102 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = ℎ → X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
| 104 | 103 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = ℎ ∧ 𝑖 ∈ ℕ) → X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
| 105 | 104 | iuneq2dv 4542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = ℎ → ∪
𝑖 ∈ ℕ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = ∪ 𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
| 106 | 105 | sseq2d 3633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = ℎ → (𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) ↔ 𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝))) |
| 107 | 106 | cbvrabv 3199 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑚 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)} = {ℎ ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)} |
| 108 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑙 → (ℎ‘𝑖) = (𝑙‘𝑖)) |
| 109 | 108 | coeq2d 5284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑙 → ([,) ∘ (ℎ‘𝑖)) = ([,) ∘ (𝑙‘𝑖))) |
| 110 | 109 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑙 → (([,) ∘ (ℎ‘𝑖))‘𝑝) = (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
| 111 | 110 | ixpeq2dv 7924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑙 → X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
| 112 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = 𝑙 ∧ 𝑖 ∈ ℕ) → X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
| 113 | 112 | iuneq2dv 4542 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = ∪ 𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
| 114 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → (𝑙‘𝑖) = (𝑙‘𝑗)) |
| 115 | 114 | coeq2d 5284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → ([,) ∘ (𝑙‘𝑖)) = ([,) ∘ (𝑙‘𝑗))) |
| 116 | 115 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → (([,) ∘ (𝑙‘𝑖))‘𝑝) = (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
| 117 | 116 | ixpeq2dv 7924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
| 118 | 117 | cbviunv 4559 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝑖 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
| 120 | 113, 119 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
| 121 | 120 | sseq2d 3633 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑙 → (𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) ↔ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝))) |
| 122 | 121 | cbvrabv 3199 |
. . . . . . . . . . . . . . . . 17
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} |
| 123 | 107, 122 | eqtri 2644 |
. . . . . . . . . . . . . . . 16
⊢ {𝑚 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} |
| 124 | 123 | mpteq2i 4741 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
| 125 | 124 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})) |
| 126 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → 𝑐 = 𝑏) |
| 127 | 125, 126 | fveq12d 6197 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏)) |
| 128 | 127 | eleq2d 2687 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏))) |
| 129 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑝 → (([,) ∘ 𝑖)‘𝑚) = (([,) ∘ 𝑖)‘𝑝)) |
| 130 | 129 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝))) |
| 131 | 130 | cbvprodv 14646 |
. . . . . . . . . . . . . . . . . . 19
⊢
∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)) = ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) |
| 132 | 131 | mpteq2i 4741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ((ℝ ×
ℝ) ↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))) |
| 134 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑡‘𝑚) = (𝑡‘𝑗)) |
| 135 | 133, 134 | fveq12d 6197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)) = ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗))) |
| 136 | 135 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ ×
ℝ) ↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗))) |
| 137 | 136 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) |
| 138 | 137 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 →
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗))))) |
| 139 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏)) |
| 140 | 139 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) |
| 141 | 138, 140 | breq12d 4666 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 →
((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))) |
| 142 | 128, 141 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∧
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))) |
| 143 | 142 | rabbidva2 3186 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) |
| 144 | 143 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})) |
| 145 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏)) |
| 146 | 145 | eleq2d 2687 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏))) |
| 147 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)) |
| 148 | 147 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑟 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))) |
| 149 | 146, 148 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))) |
| 150 | 149 | rabbidva2 3186 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}) |
| 151 | 150 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}) |
| 152 | 151 | a1i 11 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
| 153 | 144, 152 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
| 154 | 153 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑐 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
| 155 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑝 → ((𝑡‘𝑗)‘𝑚) = ((𝑡‘𝑗)‘𝑝)) |
| 156 | 155 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑚 = 𝑝 → (1st ‘((𝑡‘𝑗)‘𝑚)) = (1st ‘((𝑡‘𝑗)‘𝑝))) |
| 157 | 156 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑝))) |
| 158 | 157 | mpteq2i 4741 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (𝑚 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑝)))) |
| 159 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑡‘𝑖) = (𝑡‘𝑗)) |
| 160 | 159 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑡‘𝑖)‘𝑚) = ((𝑡‘𝑗)‘𝑚)) |
| 161 | 160 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (2nd ‘((𝑡‘𝑖)‘𝑚)) = (2nd ‘((𝑡‘𝑗)‘𝑚))) |
| 162 | 161 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚))) = (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚)))) |
| 163 | 155 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑝 → (2nd ‘((𝑡‘𝑗)‘𝑚)) = (2nd ‘((𝑡‘𝑗)‘𝑝))) |
| 164 | 163 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝))) |
| 165 | 164 | a1i 11 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
| 166 | 162, 165 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
| 167 | 166 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
| 168 | 39, 82, 83, 84, 85, 86, 89, 95, 154, 158, 167 | hspmbllem3 40842 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
| 169 | 75, 81, 168 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
| 170 | 74, 169 | pm2.61dan 832 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
| 171 | 53, 56, 170 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
| 172 | 2, 3, 4, 52, 171 | caragenel2d 40746 |
. 2
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋))) |
| 173 | 1 | dmvon 40820 |
. . 3
⊢ (𝜑 → dom (voln‘𝑋) =
(CaraGen‘(voln*‘𝑋))) |
| 174 | 173 | eqcomd 2628 |
. 2
⊢ (𝜑 →
(CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋)) |
| 175 | 172, 174 | eleqtrd 2703 |
1
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ dom (voln‘𝑋)) |