Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemeth Structured version   Visualization version   GIF version

Theorem circlemeth 30718
Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemeth.n (𝜑𝑁 ∈ ℕ0)
circlemeth.s (𝜑𝑆 ∈ ℕ)
circlemeth.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
Assertion
Ref Expression
circlemeth (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝐿,𝑎,𝑐,𝑥   𝑁,𝑎,𝑐,𝑥   𝑆,𝑎,𝑐,𝑥   𝜑,𝑎,𝑐,𝑥

Proof of Theorem circlemeth
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 circlemeth.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
21adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
3 ioossre 12235 . . . . . . . . 9 (0(,)1) ⊆ ℝ
4 ax-resscn 9993 . . . . . . . . 9 ℝ ⊆ ℂ
53, 4sstri 3612 . . . . . . . 8 (0(,)1) ⊆ ℂ
65a1i 11 . . . . . . 7 (𝜑 → (0(,)1) ⊆ ℂ)
76sselda 3603 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
8 circlemeth.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
98nnnn0d 11351 . . . . . . 7 (𝜑𝑆 ∈ ℕ0)
109adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
11 circlemeth.l . . . . . . 7 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
1211adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
132, 7, 10, 12vtsprod 30717 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))))
1413oveq1d 6665 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
15 fzfid 12772 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (0...(𝑆 · 𝑁)) ∈ Fin)
16 ax-icn 9995 . . . . . . . . 9 i ∈ ℂ
17 2cn 11091 . . . . . . . . . 10 2 ∈ ℂ
18 picn 24211 . . . . . . . . . 10 π ∈ ℂ
1917, 18mulcli 10045 . . . . . . . . 9 (2 · π) ∈ ℂ
2016, 19mulcli 10045 . . . . . . . 8 (i · (2 · π)) ∈ ℂ
2120a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (i · (2 · π)) ∈ ℂ)
221nn0cnd 11353 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
2322negcld 10379 . . . . . . . . . 10 (𝜑 → -𝑁 ∈ ℂ)
2423ralrimivw 2967 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0(,)1)-𝑁 ∈ ℂ)
2524r19.21bi 2932 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → -𝑁 ∈ ℂ)
2625, 7mulcld 10060 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (-𝑁 · 𝑥) ∈ ℂ)
2721, 26mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
2827efcld 30669 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
29 fz1ssnn 12372 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3029a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
31 fzssz 12343 . . . . . . . . 9 (0...(𝑆 · 𝑁)) ⊆ ℤ
32 simpr 477 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3331, 32sseldi 3601 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3433adantlr 751 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3510adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
36 fzfid 12772 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
3730, 34, 35, 36reprfi 30694 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
38 fzofi 12773 . . . . . . . . 9 (0..^𝑆) ∈ Fin
3938a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
401ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
419ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
4233zcnd 11483 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
4342ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑚 ∈ ℂ)
4411ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
45 simpr 477 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
4629a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
4733adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
489ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
49 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
5046, 47, 48, 49reprf 30690 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
5150ffvelrnda 6359 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
5229, 51sseldi 3601 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
5340, 41, 43, 44, 45, 52breprexplemb 30709 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5453adantl3r 786 . . . . . . . 8 (((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5539, 54fprodcl 14682 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5620a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (i · (2 · π)) ∈ ℂ)
5734zcnd 11483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
587adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑥 ∈ ℂ)
5957, 58mulcld 10060 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 · 𝑥) ∈ ℂ)
6056, 59mulcld 10060 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ)
6160efcld 30669 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6261adantr 481 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6355, 62mulcld 10060 . . . . . 6 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6437, 63fsumcl 14464 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6515, 28, 64fsummulc1 14517 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6628adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6737, 66, 63fsummulc1 14517 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6866adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6955, 62, 68mulassd 10063 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))))
7027adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
71 efadd 14824 . . . . . . . . . . . 12 ((((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ ∧ ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7260, 70, 71syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7326adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (-𝑁 · 𝑥) ∈ ℂ)
7456, 59, 73adddid 10064 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))))
7525adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → -𝑁 ∈ ℂ)
7657, 75, 58adddird 10065 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 · 𝑥) + (-𝑁 · 𝑥)))
7722ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
7857, 77negsubd 10398 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 + -𝑁) = (𝑚𝑁))
7978oveq1d 6665 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚𝑁) · 𝑥))
8076, 79eqtr3d 2658 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 · 𝑥) + (-𝑁 · 𝑥)) = ((𝑚𝑁) · 𝑥))
8180oveq2d 6666 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8274, 81eqtr3d 2658 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8382fveq2d 6195 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8472, 83eqtr3d 2658 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8584oveq2d 6666 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8685adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8769, 86eqtrd 2656 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8887sumeq2dv 14433 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8967, 88eqtrd 2656 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9089sumeq2dv 14433 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9114, 65, 903eqtrd 2660 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9291itgeq2dv 23548 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
93 ioombl 23333 . . . . 5 (0(,)1) ∈ dom vol
9493a1i 11 . . . 4 (𝜑 → (0(,)1) ∈ dom vol)
95 fzfid 12772 . . . 4 (𝜑 → (0...(𝑆 · 𝑁)) ∈ Fin)
96 sumex 14418 . . . . 5 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V
9796a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0(,)1) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁)))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V)
9894adantr 481 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
9929a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
1009adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
101 fzfid 12772 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
10299, 33, 100, 101reprfi 30694 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
10338a1i 11 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
10453adantllr 755 . . . . . . . . 9 (((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
105103, 104fprodcl 14682 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
10657, 77subcld 10392 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
107106, 58mulcld 10060 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) · 𝑥) ∈ ℂ)
10856, 107mulcld 10060 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
109108an32s 846 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
110109adantr 481 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
111110efcld 30669 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
112105, 111mulcld 10060 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
113112anasss 679 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ (𝑥 ∈ (0(,)1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
11438a1i 11 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
115114, 53fprodcl 14682 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
116 fvex 6201 . . . . . . . 8 (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V
117116a1i 11 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
118 ioossicc 12259 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
119118a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ⊆ (0[,]1))
12093a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
121116a1i 11 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0[,]1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
122 0red 10041 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℝ)
123 1red 10055 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℝ)
12422adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
12542, 124subcld 10392 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
126 unitsscn 29942 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℂ
127126a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0[,]1) ⊆ ℂ)
128 ssid 3624 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
129128a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ℂ ⊆ ℂ)
130 cncfmptc 22714 . . . . . . . . . . . . 13 (((𝑚𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
131125, 127, 129, 130syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
132 cncfmptid 22715 . . . . . . . . . . . . 13 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
133127, 129, 132syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
134131, 133mulcncf 23215 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ ((𝑚𝑁) · 𝑥)) ∈ ((0[,]1)–cn→ℂ))
135134efmul2picn 30674 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ))
136 cniccibl 23607 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
137122, 123, 135, 136syl3anc 1326 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
138119, 120, 121, 137iblss 23571 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
139138adantr 481 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
140115, 117, 139iblmulc2 23597 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
14198, 102, 113, 140itgfsum 23593 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
142141simpld 475 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
14394, 95, 97, 142itgfsum 23593 . . 3 (𝜑 → ((𝑥 ∈ (0(,)1) ↦ Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
144143simprd 479 . 2 (𝜑 → ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
145 oveq2 6658 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 1 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1))
146 oveq2 6658 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 0 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0))
147102, 115fsumcl 14464 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
148147mulid1d 10057 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
149147mul01d 10235 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0) = 0)
150145, 146, 148, 149ifeq3da 29365 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
15142, 124subeq0ad 10402 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) = 0 ↔ 𝑚 = 𝑁))
152 velsn 4193 . . . . . . . 8 (𝑚 ∈ {𝑁} ↔ 𝑚 = 𝑁)
153151, 152syl6rbbr 279 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 ∈ {𝑁} ↔ (𝑚𝑁) = 0))
154153ifbid 4108 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
1551nn0zd 11480 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
156155ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑁 ∈ ℤ)
15747, 156zsubcld 11487 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚𝑁) ∈ ℤ)
158 itgexpif 30684 . . . . . . . . . 10 ((𝑚𝑁) ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
159157, 158syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
160159oveq2d 6666 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
161160sumeq2dv 14433 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
162 1cnd 10056 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℂ)
163 0cnd 10033 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℂ)
164162, 163ifcld 4131 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, 1, 0) ∈ ℂ)
165102, 164, 115fsummulc1 14517 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
166161, 165eqtr4d 2659 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
167150, 154, 1663eqtr4rd 2667 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
168167sumeq2dv 14433 . . . 4 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
169 0zd 11389 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
1709nn0zd 11480 . . . . . . . 8 (𝜑𝑆 ∈ ℤ)
171170, 155zmulcld 11488 . . . . . . 7 (𝜑 → (𝑆 · 𝑁) ∈ ℤ)
1721nn0ge0d 11354 . . . . . . 7 (𝜑 → 0 ≤ 𝑁)
173 nnmulge 29515 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑆 · 𝑁))
1748, 1, 173syl2anc 693 . . . . . . 7 (𝜑𝑁 ≤ (𝑆 · 𝑁))
175 elfz4 12335 . . . . . . 7 (((0 ∈ ℤ ∧ (𝑆 · 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝑁𝑁 ≤ (𝑆 · 𝑁))) → 𝑁 ∈ (0...(𝑆 · 𝑁)))
176169, 171, 155, 172, 174, 175syl32anc 1334 . . . . . 6 (𝜑𝑁 ∈ (0...(𝑆 · 𝑁)))
177176snssd 4340 . . . . 5 (𝜑 → {𝑁} ⊆ (0...(𝑆 · 𝑁)))
178177sselda 3603 . . . . . . 7 ((𝜑𝑚 ∈ {𝑁}) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
179178, 147syldan 487 . . . . . 6 ((𝜑𝑚 ∈ {𝑁}) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
180179ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
18195olcd 408 . . . . 5 (𝜑 → ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin))
182 sumss2 14457 . . . . 5 ((({𝑁} ⊆ (0...(𝑆 · 𝑁)) ∧ ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) ∧ ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin)) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
183177, 180, 181, 182syl21anc 1325 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
18429a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) ⊆ ℕ)
185 fzfid 12772 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
186184, 155, 9, 185reprfi 30694 . . . . . 6 (𝜑 → ((1...𝑁)(repr‘𝑆)𝑁) ∈ Fin)
18738a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (0..^𝑆) ∈ Fin)
1881ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1899ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
19022ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℂ)
19111ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
192 simpr 477 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
19329a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (1...𝑁) ⊆ ℕ)
194155adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑁 ∈ ℤ)
1959adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑆 ∈ ℕ0)
196 simpr 477 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁))
197193, 194, 195, 196reprf 30690 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
198197ffvelrnda 6359 . . . . . . . . 9 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
19929, 198sseldi 3601 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
200188, 189, 190, 191, 192, 199breprexplemb 30709 . . . . . . 7 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
201187, 200fprodcl 14682 . . . . . 6 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
202186, 201fsumcl 14464 . . . . 5 (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
203 oveq2 6658 . . . . . . 7 (𝑚 = 𝑁 → ((1...𝑁)(repr‘𝑆)𝑚) = ((1...𝑁)(repr‘𝑆)𝑁))
204203sumeq1d 14431 . . . . . 6 (𝑚 = 𝑁 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
205204sumsn 14475 . . . . 5 ((𝑁 ∈ ℕ0 ∧ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
2061, 202, 205syl2anc 693 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
207168, 183, 2063eqtr2d 2662 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
208141simprd 479 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
209111an32s 846 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
210115, 209, 139itgmulc2 23600 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
211210sumeq2dv 14433 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
212208, 211eqtr4d 2659 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
213212sumeq2dv 14433 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
2141, 9reprfz1 30702 . . . 4 (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁))
215214sumeq1d 14431 . . 3 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
216207, 213, 2153eqtr4d 2666 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
21792, 144, 2163eqtrrd 2661 1 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  (,)cioo 12175  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465  Σcsu 14416  cprod 14635  expce 14792  πcpi 14797  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  citg 23387  reprcrepr 30686  vtscvts 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-repr 30687  df-vts 30714
This theorem is referenced by:  circlemethnat  30719  circlevma  30720  circlemethhgt  30721
  Copyright terms: Public domain W3C validator