| Step | Hyp | Ref
| Expression |
| 1 | | circlemeth.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈
ℕ0) |
| 3 | | ioossre 12235 |
. . . . . . . . 9
⊢ (0(,)1)
⊆ ℝ |
| 4 | | ax-resscn 9993 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
| 5 | 3, 4 | sstri 3612 |
. . . . . . . 8
⊢ (0(,)1)
⊆ ℂ |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0(,)1) ⊆
ℂ) |
| 7 | 6 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
| 8 | | circlemeth.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℕ) |
| 9 | 8 | nnnn0d 11351 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈
ℕ0) |
| 11 | | circlemeth.l |
. . . . . . 7
⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚
ℕ)) |
| 12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚
ℕ)) |
| 13 | 2, 7, 10, 12 | vtsprod 30717 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥))))) |
| 14 | 13 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) = (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 15 | | fzfid 12772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (0...(𝑆 · 𝑁)) ∈ Fin) |
| 16 | | ax-icn 9995 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 17 | | 2cn 11091 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
| 18 | | picn 24211 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
| 19 | 17, 18 | mulcli 10045 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℂ |
| 20 | 16, 19 | mulcli 10045 |
. . . . . . . 8
⊢ (i
· (2 · π)) ∈ ℂ |
| 21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (i · (2
· π)) ∈ ℂ) |
| 22 | 1 | nn0cnd 11353 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 23 | 22 | negcld 10379 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑁 ∈ ℂ) |
| 24 | 23 | ralrimivw 2967 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (0(,)1)-𝑁 ∈ ℂ) |
| 25 | 24 | r19.21bi 2932 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → -𝑁 ∈ ℂ) |
| 26 | 25, 7 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (-𝑁 · 𝑥) ∈ ℂ) |
| 27 | 21, 26 | mulcld 10060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → ((i · (2
· π)) · (-𝑁 · 𝑥)) ∈ ℂ) |
| 28 | 27 | efcld 30669 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ) |
| 29 | | fz1ssnn 12372 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
| 30 | 29 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ) |
| 31 | | fzssz 12343 |
. . . . . . . . 9
⊢
(0...(𝑆 ·
𝑁)) ⊆
ℤ |
| 32 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁))) |
| 33 | 31, 32 | sseldi 3601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ) |
| 34 | 33 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ) |
| 35 | 10 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈
ℕ0) |
| 36 | | fzfid 12772 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin) |
| 37 | 30, 34, 35, 36 | reprfi 30694 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin) |
| 38 | | fzofi 12773 |
. . . . . . . . 9
⊢
(0..^𝑆) ∈
Fin |
| 39 | 38 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
| 40 | 1 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈
ℕ0) |
| 41 | 9 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈
ℕ0) |
| 42 | 33 | zcnd 11483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ) |
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑚 ∈ ℂ) |
| 44 | 11 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚
ℕ)) |
| 45 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
| 46 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ) |
| 47 | 33 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ) |
| 48 | 9 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈
ℕ0) |
| 49 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) |
| 50 | 46, 47, 48, 49 | reprf 30690 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁)) |
| 51 | 50 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ (1...𝑁)) |
| 52 | 29, 51 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ ℕ) |
| 53 | 40, 41, 43, 44, 45, 52 | breprexplemb 30709 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 54 | 53 | adantl3r 786 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 55 | 39, 54 | fprodcl 14682 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 56 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (i · (2 · π))
∈ ℂ) |
| 57 | 34 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ) |
| 58 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑥 ∈ ℂ) |
| 59 | 57, 58 | mulcld 10060 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 · 𝑥) ∈ ℂ) |
| 60 | 56, 59 | mulcld 10060 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· (𝑚 · 𝑥)) ∈
ℂ) |
| 61 | 60 | efcld 30669 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ∈
ℂ) |
| 62 | 61 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · (𝑚 ·
𝑥))) ∈
ℂ) |
| 63 | 55, 62 | mulcld 10060 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ∈
ℂ) |
| 64 | 37, 63 | fsumcl 14464 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ∈
ℂ) |
| 65 | 15, 28, 64 | fsummulc1 14517 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 66 | 28 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2
· π)) · (-𝑁 · 𝑥))) ∈ ℂ) |
| 67 | 37, 66, 63 | fsummulc1 14517 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 68 | 66 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · (-𝑁
· 𝑥))) ∈
ℂ) |
| 69 | 55, 62, 68 | mulassd 10063 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))) |
| 70 | 27 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· (-𝑁 · 𝑥)) ∈
ℂ) |
| 71 | | efadd 14824 |
. . . . . . . . . . . 12
⊢ ((((i
· (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ ∧ ((i · (2
· π)) · (-𝑁 · 𝑥)) ∈ ℂ) → (exp‘(((i
· (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) ·
(-𝑁 · 𝑥)))) = ((exp‘((i ·
(2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥))))) |
| 72 | 60, 70, 71 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2
· π)) · (𝑚
· 𝑥)) + ((i ·
(2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 ·
π)) · (𝑚 ·
𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 73 | 26 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (-𝑁 · 𝑥) ∈ ℂ) |
| 74 | 56, 59, 73 | adddid 10064 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = (((i · (2 · π))
· (𝑚 · 𝑥)) + ((i · (2 ·
π)) · (-𝑁
· 𝑥)))) |
| 75 | 25 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → -𝑁 ∈ ℂ) |
| 76 | 57, 75, 58 | adddird 10065 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) |
| 77 | 22 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ) |
| 78 | 57, 77 | negsubd 10398 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 + -𝑁) = (𝑚 − 𝑁)) |
| 79 | 78 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 − 𝑁) · 𝑥)) |
| 80 | 76, 79 | eqtr3d 2658 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 · 𝑥) + (-𝑁 · 𝑥)) = ((𝑚 − 𝑁) · 𝑥)) |
| 81 | 80 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥))) |
| 82 | 74, 81 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (((i · (2 · π))
· (𝑚 · 𝑥)) + ((i · (2 ·
π)) · (-𝑁
· 𝑥))) = ((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) |
| 83 | 82 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2
· π)) · (𝑚
· 𝑥)) + ((i ·
(2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥)))) |
| 84 | 72, 83 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥)))) |
| 85 | 84 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 86 | 85 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 87 | 69, 86 | eqtrd 2656 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 88 | 87 | sumeq2dv 14433 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 89 | 67, 88 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 90 | 89 | sumeq2dv 14433 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 91 | 14, 65, 90 | 3eqtrd 2660 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
| 92 | 91 | itgeq2dv 23548 |
. 2
⊢ (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
| 93 | | ioombl 23333 |
. . . . 5
⊢ (0(,)1)
∈ dom vol |
| 94 | 93 | a1i 11 |
. . . 4
⊢ (𝜑 → (0(,)1) ∈ dom
vol) |
| 95 | | fzfid 12772 |
. . . 4
⊢ (𝜑 → (0...(𝑆 · 𝑁)) ∈ Fin) |
| 96 | | sumex 14418 |
. . . . 5
⊢
Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ V |
| 97 | 96 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (0(,)1) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁)))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ V) |
| 98 | 94 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom
vol) |
| 99 | 29 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ) |
| 100 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈
ℕ0) |
| 101 | | fzfid 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin) |
| 102 | 99, 33, 100, 101 | reprfi 30694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin) |
| 103 | 38 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
| 104 | 53 | adantllr 755 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 105 | 103, 104 | fprodcl 14682 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 106 | 57, 77 | subcld 10392 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 − 𝑁) ∈ ℂ) |
| 107 | 106, 58 | mulcld 10060 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 − 𝑁) · 𝑥) ∈ ℂ) |
| 108 | 56, 107 | mulcld 10060 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
| 109 | 108 | an32s 846 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) → ((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
| 110 | 109 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
| 111 | 110 | efcld 30669 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥))) ∈
ℂ) |
| 112 | 105, 111 | mulcld 10060 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ℂ) |
| 113 | 112 | anasss 679 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ (𝑥 ∈ (0(,)1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ℂ) |
| 114 | 38 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
| 115 | 114, 53 | fprodcl 14682 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 116 | | fvex 6201 |
. . . . . . . 8
⊢
(exp‘((i · (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V |
| 117 | 116 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V) |
| 118 | | ioossicc 12259 |
. . . . . . . . . 10
⊢ (0(,)1)
⊆ (0[,]1) |
| 119 | 118 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ⊆
(0[,]1)) |
| 120 | 93 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom
vol) |
| 121 | 116 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0[,]1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V) |
| 122 | | 0red 10041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈
ℝ) |
| 123 | | 1red 10055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈
ℝ) |
| 124 | 22 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ) |
| 125 | 42, 124 | subcld 10392 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 − 𝑁) ∈ ℂ) |
| 126 | | unitsscn 29942 |
. . . . . . . . . . . . . 14
⊢ (0[,]1)
⊆ ℂ |
| 127 | 126 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0[,]1) ⊆
ℂ) |
| 128 | | ssid 3624 |
. . . . . . . . . . . . . 14
⊢ ℂ
⊆ ℂ |
| 129 | 128 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ℂ ⊆
ℂ) |
| 130 | | cncfmptc 22714 |
. . . . . . . . . . . . 13
⊢ (((𝑚 − 𝑁) ∈ ℂ ∧ (0[,]1) ⊆
ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ (𝑚 − 𝑁)) ∈ ((0[,]1)–cn→ℂ)) |
| 131 | 125, 127,
129, 130 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (𝑚 − 𝑁)) ∈ ((0[,]1)–cn→ℂ)) |
| 132 | | cncfmptid 22715 |
. . . . . . . . . . . . 13
⊢ (((0[,]1)
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ)) |
| 133 | 127, 129,
132 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ)) |
| 134 | 131, 133 | mulcncf 23215 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ ((𝑚 − 𝑁) · 𝑥)) ∈ ((0[,]1)–cn→ℂ)) |
| 135 | 134 | efmul2picn 30674 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) |
| 136 | | cniccibl 23607 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
| 137 | 122, 123,
135, 136 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
| 138 | 119, 120,
121, 137 | iblss 23571 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
| 139 | 138 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
| 140 | 115, 117,
139 | iblmulc2 23597 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈
𝐿1) |
| 141 | 98, 102, 113, 140 | itgfsum 23593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈ 𝐿1 ∧
∫(0(,)1)Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥)) |
| 142 | 141 | simpld 475 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈
𝐿1) |
| 143 | 94, 95, 97, 142 | itgfsum 23593 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (0(,)1) ↦ Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈ 𝐿1 ∧
∫(0(,)1)Σ𝑚 ∈
(0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥)) |
| 144 | 143 | simprd 479 |
. 2
⊢ (𝜑 → ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
| 145 | | oveq2 6658 |
. . . . . . 7
⊢
(if((𝑚 − 𝑁) = 0, 1, 0) = 1 →
(Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 1)) |
| 146 | | oveq2 6658 |
. . . . . . 7
⊢
(if((𝑚 − 𝑁) = 0, 1, 0) = 0 →
(Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 0)) |
| 147 | 102, 115 | fsumcl 14464 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 148 | 147 | mulid1d 10057 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 1) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 149 | 147 | mul01d 10235 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 0) = 0) |
| 150 | 145, 146,
148, 149 | ifeq3da 29365 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚 − 𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
| 151 | 42, 124 | subeq0ad 10402 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 − 𝑁) = 0 ↔ 𝑚 = 𝑁)) |
| 152 | | velsn 4193 |
. . . . . . . 8
⊢ (𝑚 ∈ {𝑁} ↔ 𝑚 = 𝑁) |
| 153 | 151, 152 | syl6rbbr 279 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 ∈ {𝑁} ↔ (𝑚 − 𝑁) = 0)) |
| 154 | 153 | ifbid 4108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0) = if((𝑚 − 𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
| 155 | 1 | nn0zd 11480 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 156 | 155 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑁 ∈ ℤ) |
| 157 | 47, 156 | zsubcld 11487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 − 𝑁) ∈ ℤ) |
| 158 | | itgexpif 30684 |
. . . . . . . . . 10
⊢ ((𝑚 − 𝑁) ∈ ℤ →
∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥 = if((𝑚 − 𝑁) = 0, 1, 0)) |
| 159 | 157, 158 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∫(0(,)1)(exp‘((i ·
(2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥 = if((𝑚 − 𝑁) = 0, 1, 0)) |
| 160 | 159 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
| 161 | 160 | sumeq2dv 14433 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
| 162 | | 1cnd 10056 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈
ℂ) |
| 163 | | 0cnd 10033 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈
ℂ) |
| 164 | 162, 163 | ifcld 4131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚 − 𝑁) = 0, 1, 0) ∈
ℂ) |
| 165 | 102, 164,
115 | fsummulc1 14517 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
| 166 | 161, 165 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
| 167 | 150, 154,
166 | 3eqtr4rd 2667 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
| 168 | 167 | sumeq2dv 14433 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
| 169 | | 0zd 11389 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
| 170 | 9 | nn0zd 11480 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℤ) |
| 171 | 170, 155 | zmulcld 11488 |
. . . . . . 7
⊢ (𝜑 → (𝑆 · 𝑁) ∈ ℤ) |
| 172 | 1 | nn0ge0d 11354 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑁) |
| 173 | | nnmulge 29515 |
. . . . . . . 8
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ≤ (𝑆 · 𝑁)) |
| 174 | 8, 1, 173 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≤ (𝑆 · 𝑁)) |
| 175 | | elfz4 12335 |
. . . . . . 7
⊢ (((0
∈ ℤ ∧ (𝑆
· 𝑁) ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ (0 ≤ 𝑁 ∧ 𝑁 ≤ (𝑆 · 𝑁))) → 𝑁 ∈ (0...(𝑆 · 𝑁))) |
| 176 | 169, 171,
155, 172, 174, 175 | syl32anc 1334 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (0...(𝑆 · 𝑁))) |
| 177 | 176 | snssd 4340 |
. . . . 5
⊢ (𝜑 → {𝑁} ⊆ (0...(𝑆 · 𝑁))) |
| 178 | 177 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑁}) → 𝑚 ∈ (0...(𝑆 · 𝑁))) |
| 179 | 178, 147 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑁}) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 180 | 179 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 181 | 95 | olcd 408 |
. . . . 5
⊢ (𝜑 → ((0...(𝑆 · 𝑁)) ⊆ (ℤ≥‘0)
∨ (0...(𝑆 · 𝑁)) ∈ Fin)) |
| 182 | | sumss2 14457 |
. . . . 5
⊢ ((({𝑁} ⊆ (0...(𝑆 · 𝑁)) ∧ ∀𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) ∧ ((0...(𝑆 · 𝑁)) ⊆ (ℤ≥‘0)
∨ (0...(𝑆 · 𝑁)) ∈ Fin)) →
Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
| 183 | 177, 180,
181, 182 | syl21anc 1325 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
| 184 | 29 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
| 185 | | fzfid 12772 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 186 | 184, 155,
9, 185 | reprfi 30694 |
. . . . . 6
⊢ (𝜑 → ((1...𝑁)(repr‘𝑆)𝑁) ∈ Fin) |
| 187 | 38 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (0..^𝑆) ∈ Fin) |
| 188 | 1 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈
ℕ0) |
| 189 | 9 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈
ℕ0) |
| 190 | 22 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℂ) |
| 191 | 11 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚
ℕ)) |
| 192 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
| 193 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (1...𝑁) ⊆ ℕ) |
| 194 | 155 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑁 ∈ ℤ) |
| 195 | 9 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑆 ∈
ℕ0) |
| 196 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) |
| 197 | 193, 194,
195, 196 | reprf 30690 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐:(0..^𝑆)⟶(1...𝑁)) |
| 198 | 197 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ (1...𝑁)) |
| 199 | 29, 198 | sseldi 3601 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ ℕ) |
| 200 | 188, 189,
190, 191, 192, 199 | breprexplemb 30709 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 201 | 187, 200 | fprodcl 14682 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 202 | 186, 201 | fsumcl 14464 |
. . . . 5
⊢ (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
| 203 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((1...𝑁)(repr‘𝑆)𝑚) = ((1...𝑁)(repr‘𝑆)𝑁)) |
| 204 | 203 | sumeq1d 14431 |
. . . . . 6
⊢ (𝑚 = 𝑁 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 205 | 204 | sumsn 14475 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 206 | 1, 202, 205 | syl2anc 693 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 207 | 168, 183,
206 | 3eqtr2d 2662 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 208 | 141 | simprd 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
| 209 | 111 | an32s 846 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ ℂ) |
| 210 | 115, 209,
139 | itgmulc2 23600 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
| 211 | 210 | sumeq2dv 14433 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
| 212 | 208, 211 | eqtr4d 2659 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥)) |
| 213 | 212 | sumeq2dv 14433 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥)) |
| 214 | 1, 9 | reprfz1 30702 |
. . . 4
⊢ (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁)) |
| 215 | 214 | sumeq1d 14431 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 216 | 207, 213,
215 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
| 217 | 92, 144, 216 | 3eqtrrd 2661 |
1
⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) d𝑥) |