Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2 Structured version   Visualization version   GIF version

Theorem wallispi2 40290
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispi2.1 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
wallispi2 𝑉 ⇝ (π / 2)

Proof of Theorem wallispi2
Dummy variables 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 1cnd 10056 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3 2cnd 11093 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℂ)
4 nncn 11028 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
53, 4mulcld 10060 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
65, 2addcld 10059 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
7 elnnuz 11724 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
87biimpi 206 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
9 eqidd 2623 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))
10 simpr 477 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → 𝑘 = 𝑚)
1110oveq2d 6666 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (2 · 𝑘) = (2 · 𝑚))
1211oveq1d 6665 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘)↑4) = ((2 · 𝑚)↑4))
1311oveq1d 6665 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) − 1) = ((2 · 𝑚) − 1))
1411, 13oveq12d 6668 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) · ((2 · 𝑘) − 1)) = ((2 · 𝑚) · ((2 · 𝑚) − 1)))
1514oveq1d 6665 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2) = (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2))
1612, 15oveq12d 6668 . . . . . . . . . 10 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
17 elfznn 12370 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
18 2cnd 11093 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 2 ∈ ℂ)
1917nncnd 11036 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℂ)
2018, 19mulcld 10060 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℂ)
21 4nn0 11311 . . . . . . . . . . . . 13 4 ∈ ℕ0
2221a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 4 ∈ ℕ0)
2320, 22expcld 13008 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚)↑4) ∈ ℂ)
24 1cnd 10056 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 1 ∈ ℂ)
2520, 24subcld 10392 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ∈ ℂ)
2620, 25mulcld 10060 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ∈ ℂ)
2726sqcld 13006 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ∈ ℂ)
28 2ne0 11113 . . . . . . . . . . . . . . 15 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 2 ≠ 0)
3017nnne0d 11065 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 𝑚 ≠ 0)
3118, 19, 29, 30mulne0d 10679 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 0)
32 1red 10055 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 ∈ ℝ)
33 2re 11090 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 2 ∈ ℝ)
3534, 32remulcld 10070 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ∈ ℝ)
3617nnred 11035 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℝ)
3734, 36remulcld 10070 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℝ)
38 1lt2 11194 . . . . . . . . . . . . . . . . . 18 1 < 2
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 < 2)
40 2t1e2 11176 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
4139, 40syl6breqr 4695 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → 1 < (2 · 1))
42 0le2 11111 . . . . . . . . . . . . . . . . . 18 0 ≤ 2
4342a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 0 ≤ 2)
44 elfzle1 12344 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 ≤ 𝑚)
4532, 36, 34, 43, 44lemul2ad 10964 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ≤ (2 · 𝑚))
4632, 35, 37, 41, 45ltletrd 10197 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 < (2 · 𝑚))
4732, 46gtned 10172 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 1)
4820, 24, 47subne0d 10401 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ≠ 0)
4920, 25, 31, 48mulne0d 10679 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ≠ 0)
50 2z 11409 . . . . . . . . . . . . 13 2 ∈ ℤ
5150a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 2 ∈ ℤ)
5226, 49, 51expne0d 13014 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ≠ 0)
5323, 27, 52divcld 10801 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)) ∈ ℂ)
549, 16, 17, 53fvmptd 6288 . . . . . . . . 9 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
5554, 53eqeltrd 2701 . . . . . . . 8 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
5655adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
57 mulcl 10020 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑚 · 𝑤) ∈ ℂ)
5857adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑚 · 𝑤) ∈ ℂ)
598, 56, 58seqcl 12821 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) ∈ ℂ)
60 2nn 11185 . . . . . . . . . 10 2 ∈ ℕ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℕ)
62 id 22 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6361, 62nnmulcld 11068 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
6463peano2nnd 11037 . . . . . . 7 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ)
6564nnne0d 11065 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
662, 6, 59, 65div32d 10824 . . . . 5 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))))
6759, 6, 65divcld 10801 . . . . . 6 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
6867mulid2d 10058 . . . . 5 (𝑛 ∈ ℕ → (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))) = ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)))
69 wallispi2lem2 40289 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) = (((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)))
7069oveq1d 6665 . . . . 5 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7166, 68, 703eqtrd 2660 . . . 4 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7271mpteq2ia 4740 . . 3 (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛))) = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
73 wallispi2lem1 40288 . . . 4 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛) = ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
7473mpteq2ia 4740 . . 3 (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
75 wallispi2.1 . . 3 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7672, 74, 753eqtr4ri 2655 . 2 𝑉 = (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛))
771, 76wallispi 40287 1 𝑉 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  4c4 11072  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cexp 12860  !cfa 13060  cli 14215  πcpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  stirlinglem15  40305
  Copyright terms: Public domain W3C validator