MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Visualization version   GIF version

Theorem vmadivsum 25171
Description: The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 10027 . . . . . . 7 ℝ ∈ V
2 rpssre 11843 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 4803 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 6680 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
6 ovexd 6680 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
7 eqidd 2623 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
8 eqidd 2623 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
94, 5, 6, 7, 8offval2 6914 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))))
109trud 1493 . . 3 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
11 fzfid 12772 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
12 elfznn 12370 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312adantl 482 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
14 vmacl 24844 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1615, 13nndivred 11069 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1711, 16fsumrecl 14465 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
1817recnd 10068 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
19 relogcl 24322 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2019recnd 10068 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
21 rprege0 11847 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
22 flge0nn0 12621 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
23 faccl 13070 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
2421, 22, 233syl 18 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℕ)
2524nnrpd 11870 . . . . . . . 8 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℝ+)
2625relogcld 24369 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
27 rerpdivcl 11861 . . . . . . 7 (((log‘(!‘(⌊‘𝑥))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2826, 27mpancom 703 . . . . . 6 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2928recnd 10068 . . . . 5 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
3018, 20, 29nnncan2d 10427 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3130mpteq2ia 4740 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3210, 31eqtri 2644 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
33 1red 10055 . . . . 5 (⊤ → 1 ∈ ℝ)
34 chpo1ub 25169 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
3534a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
36 rpre 11839 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
37 chpcl 24850 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
39 rerpdivcl 11861 . . . . . . . 8 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4038, 39mpancom 703 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4140recnd 10068 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4241adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4318, 29subcld 10392 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4443adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4536adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
4616, 45remulcld 10070 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
47 nndivre 11056 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
4836, 12, 47syl2an 494 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
49 reflcl 12597 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5115, 50remulcld 10070 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
5246, 51resubcld 10458 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5348, 50resubcld 10458 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
54 1red 10055 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
55 vmage0 24847 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
5613, 55syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
57 fracle1 12604 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5848, 57syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5953, 54, 15, 56, 58lemul2ad 10964 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · 1))
6015recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6148recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
6250recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
6360, 61, 62subdid 10486 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
64 rpcn 11841 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6564adantr 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
6613nnrpd 11870 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
67 rpcnne0 11850 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 div23 10704 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = (((Λ‘𝑛) / 𝑛) · 𝑥))
70 divass 10703 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7169, 70eqtr3d 2658 . . . . . . . . . . . . . 14 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7260, 65, 68, 71syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7372oveq1d 6665 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7463, 73eqtr4d 2659 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7560mulid1d 10057 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · 1) = (Λ‘𝑛))
7659, 74, 753brtr3d 4684 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ (Λ‘𝑛))
7711, 52, 15, 76fsumle 14531 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
7816recnd 10068 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
7911, 64, 78fsummulc1 14517 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥))
80 logfac2 24942 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8121, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8279, 81oveq12d 6668 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8346recnd 10068 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
8451recnd 10068 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
8511, 83, 84fsumsub 14520 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8682, 85eqtr4d 2659 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
87 chpval 24848 . . . . . . . . . 10 (𝑥 ∈ ℝ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8836, 87syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8977, 86, 883brtr4d 4685 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥))
9017, 36remulcld 10070 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
9190, 26resubcld 10458 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ)
92 rpregt0 11846 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
93 lediv1 10888 . . . . . . . . 9 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ (ψ‘𝑥) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9491, 38, 92, 93syl3anc 1326 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9589, 94mpbid 222 . . . . . . 7 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))
9690recnd 10068 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
9726recnd 10068 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
98 rpcnne0 11850 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
99 divsubdir 10721 . . . . . . . . . . 11 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
10096, 97, 98, 99syl3anc 1326 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
101 rpne0 11848 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
10218, 64, 101divcan4d 10807 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
103102oveq1d 6665 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
104100, 103eqtr2d 2657 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
105104fveq2d 6195 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
106 rerpdivcl 11861 . . . . . . . . . 10 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
10791, 106mpancom 703 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
108 flle 12600 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
10948, 108syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
11048, 50subge0d 10617 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ↔ (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)))
111109, 110mpbird 247 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
11215, 53, 56, 111mulge0d 10604 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
113112, 74breqtrd 4679 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
11411, 52, 113fsumge0 14527 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
115114, 86breqtrrd 4681 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))))
116 divge0 10892 . . . . . . . . . 10 (((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥))))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
11791, 115, 92, 116syl21anc 1325 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
118107, 117absidd 14161 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
119105, 118eqtrd 2656 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
120 chpge0 24852 . . . . . . . . . 10 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
12136, 120syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (ψ‘𝑥))
122 divge0 10892 . . . . . . . . 9 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
12338, 121, 92, 122syl21anc 1325 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ ((ψ‘𝑥) / 𝑥))
12440, 123absidd 14161 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘((ψ‘𝑥) / 𝑥)) = ((ψ‘𝑥) / 𝑥))
12595, 119, 1243brtr4d 4685 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
126125ad2antrl 764 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
12733, 35, 42, 44, 126o1le 14383 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
128127trud 1493 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
129 logfacrlim 24949 . . . 4 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
130 rlimo1 14347 . . . 4 ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
131129, 130ax-mp 5 . . 3 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
132 o1sub 14346 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1))
133128, 131, 132mp2an 708 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1)
13432, 133eqeltrri 2698 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794  Vcvv 3200   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  +crp 11832  ...cfz 12326  cfl 12591  !cfa 13060  abscabs 13974  𝑟 crli 14216  𝑂(1)co1 14217  Σcsu 14416  logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826
This theorem is referenced by:  vmadivsumb  25172  rpvmasumlem  25176  vmalogdivsum2  25227  vmalogdivsum  25228  2vmadivsumlem  25229  selberg3lem1  25246  selberg4lem1  25249  pntrsumo1  25254  selbergr  25257
  Copyright terms: Public domain W3C validator