| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀↑𝑥) = (𝑀↑0)) |
| 2 | 1 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀↑𝑥) − 1) = ((𝑀↑0) − 1)) |
| 3 | 2 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑0) − 1))) |
| 4 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) |
| 5 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑇↑𝑥) = (𝑇↑0)) |
| 6 | 4, 5 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 0) · (𝑇↑0))) |
| 7 | 6 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 8 | 3, 7 | raleqbidv 3152 |
. . . . . 6
⊢ (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 9 | 8 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))) |
| 10 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀↑𝑥) = (𝑀↑𝑛)) |
| 11 | 10 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑛) − 1)) |
| 12 | 11 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑛) − 1))) |
| 13 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛)) |
| 14 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑇↑𝑥) = (𝑇↑𝑛)) |
| 15 | 13, 14 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 16 | 15 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 17 | 12, 16 | raleqbidv 3152 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 18 | 17 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))))) |
| 19 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀↑𝑥) = (𝑀↑(𝑛 + 1))) |
| 20 | 19 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀↑𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1)) |
| 21 | 20 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1))) |
| 22 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1))) |
| 23 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑇↑𝑥) = (𝑇↑(𝑛 + 1))) |
| 24 | 22, 23 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 25 | 24 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 26 | 21, 25 | raleqbidv 3152 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 27 | 26 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 28 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀↑𝑥) = (𝑀↑𝑋)) |
| 29 | 28 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑋) − 1)) |
| 30 | 29 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑋) − 1))) |
| 31 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋)) |
| 32 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑇↑𝑥) = (𝑇↑𝑋)) |
| 33 | 31, 32 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
| 34 | 33 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 35 | 30, 34 | raleqbidv 3152 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 36 | 35 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))))) |
| 37 | | ostth2.5 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) |
| 38 | | eluz2nn 11726 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℕ) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 40 | 39 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 41 | 40 | exp0d 13002 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀↑0) = 1) |
| 42 | 41 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀↑0) − 1) = (1 −
1)) |
| 43 | | 1m1e0 11089 |
. . . . . . . . . 10
⊢ (1
− 1) = 0 |
| 44 | 42, 43 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀↑0) − 1) = 0) |
| 45 | 44 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑀↑0) − 1)) =
(0...0)) |
| 46 | 45 | eleq2d 2687 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈
(0...0))) |
| 47 | | 0le0 11110 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 48 | 47 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 0) |
| 49 | | ostth.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 50 | | qabsabv.a |
. . . . . . . . . . 11
⊢ 𝐴 = (AbsVal‘𝑄) |
| 51 | | qrng.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 52 | 51 | qrng0 25310 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑄) |
| 53 | 50, 52 | abv0 18831 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → (𝐹‘0) = 0) |
| 54 | 49, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) = 0) |
| 55 | 40 | mul01d 10235 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 0) = 0) |
| 56 | 55 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0))) |
| 57 | | ostth2.7 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) |
| 58 | | 1re 10039 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 59 | | nnq 11801 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
| 60 | 39, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 61 | 51 | qrngbas 25308 |
. . . . . . . . . . . . . . . . 17
⊢ ℚ =
(Base‘𝑄) |
| 62 | 50, 61 | abvcl 18824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) |
| 63 | 49, 60, 62 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 64 | | ifcl 4130 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 65 | 58, 63, 64 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 66 | 57, 65 | syl5eqel 2705 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 67 | 66 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 68 | | 0nn0 11307 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
| 69 | | expcl 12878 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝑇↑0) ∈ ℂ) |
| 70 | 67, 68, 69 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇↑0) ∈ ℂ) |
| 71 | 70 | mul02d 10234 |
. . . . . . . . . 10
⊢ (𝜑 → (0 · (𝑇↑0)) = 0) |
| 72 | 56, 71 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0) |
| 73 | 48, 54, 72 | 3brtr4d 4685 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))) |
| 74 | | elfz1eq 12352 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
| 75 | 74 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...0) → (𝐹‘𝑘) = (𝐹‘0)) |
| 76 | 75 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...0) → ((𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 77 | 73, 76 | syl5ibrcom 237 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...0) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 78 | 46, 77 | sylbid 230 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 79 | 78 | ralrimiv 2965 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))) |
| 80 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 81 | 80 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 82 | 81 | cbvralv 3171 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 83 | 49 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝐹 ∈ 𝐴) |
| 84 | | elfzelz 12342 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ) |
| 85 | 84 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℤ) |
| 86 | | zq 11794 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℚ) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℚ) |
| 88 | 50, 61 | abvcl 18824 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑘 ∈ ℚ) → (𝐹‘𝑘) ∈ ℝ) |
| 89 | 83, 87, 88 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ∈ ℝ) |
| 90 | 39 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℕ) |
| 91 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℕ0) |
| 92 | 90, 91 | nnexpcld 13030 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℕ) |
| 93 | 85, 92 | zmodcld 12691 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈
ℕ0) |
| 94 | 93 | nn0zd 11480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℤ) |
| 95 | | zq 11794 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 mod (𝑀↑𝑛)) ∈ ℤ → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
| 97 | 50, 61 | abvcl 18824 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
| 98 | 83, 96, 97 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
| 99 | 90, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℚ) |
| 100 | 83, 99, 62 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ∈ ℝ) |
| 101 | 100, 91 | reexpcld 13025 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℝ) |
| 102 | 85 | zred 11482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℝ) |
| 103 | 102, 92 | nndivred 11069 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) ∈ ℝ) |
| 104 | 103 | flcld 12599 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℤ) |
| 105 | | zq 11794 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘(𝑘 /
(𝑀↑𝑛))) ∈ ℤ →
(⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
| 107 | 50, 61 | abvcl 18824 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
| 108 | 83, 106, 107 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
| 109 | 101, 108 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ∈ ℝ) |
| 110 | 98, 109 | readdcld 10069 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ∈ ℝ) |
| 111 | 90 | nnred 11035 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℝ) |
| 112 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
| 113 | 112 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℕ) |
| 114 | 113 | nnred 11035 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℝ) |
| 115 | 111, 114 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ) |
| 116 | 66 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑇 ∈ ℝ) |
| 117 | | peano2nn0 11333 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
| 118 | 117 | ad2antlr 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
ℕ0) |
| 119 | 116, 118 | reexpcld 13025 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ) |
| 120 | 115, 119 | remulcld 10070 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ) |
| 121 | | nnq 11801 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀↑𝑛) ∈ ℕ → (𝑀↑𝑛) ∈ ℚ) |
| 122 | 92, 121 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℚ) |
| 123 | | qmulcl 11806 |
. . . . . . . . . . . . . 14
⊢ (((𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
| 124 | 122, 106,
123 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
| 125 | | qex 11800 |
. . . . . . . . . . . . . . 15
⊢ ℚ
∈ V |
| 126 | | cnfldadd 19751 |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘ℂfld) |
| 127 | 51, 126 | ressplusg 15993 |
. . . . . . . . . . . . . . 15
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
| 128 | 125, 127 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑄) |
| 129 | 50, 61, 128 | abvtri 18830 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ ∧ ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 130 | 83, 96, 124, 129 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 131 | 92 | nnrpd 11870 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈
ℝ+) |
| 132 | | modval 12670 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℝ ∧ (𝑀↑𝑛) ∈ ℝ+) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 133 | 102, 131,
132 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 134 | 133 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 135 | 102 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℂ) |
| 136 | | qcn 11802 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 137 | 124, 136 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 138 | 135, 137 | npcand 10396 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
| 139 | 134, 138 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
| 140 | 139 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = (𝐹‘𝑘)) |
| 141 | | cnfldmul 19752 |
. . . . . . . . . . . . . . . . . 18
⊢ ·
= (.r‘ℂfld) |
| 142 | 51, 141 | ressmulr 16006 |
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
| 143 | 125, 142 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ·
= (.r‘𝑄) |
| 144 | 50, 61, 143 | abvmul 18829 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 145 | 83, 122, 106, 144 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 146 | 51, 50 | qabvexp 25315 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
| 147 | 83, 99, 91, 146 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
| 148 | 147 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 149 | 145, 148 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 150 | 149 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 151 | 130, 140,
150 | 3brtr3d 4684 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 152 | 116, 91 | reexpcld 13025 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℝ) |
| 153 | 115, 152 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ∈ ℝ) |
| 154 | | nn0re 11301 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
| 155 | 154 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℝ) |
| 156 | 111, 155 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℝ) |
| 157 | 156, 152 | remulcld 10070 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) · (𝑇↑𝑛)) ∈ ℝ) |
| 158 | 111, 152 | remulcld 10070 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑇↑𝑛)) ∈ ℝ) |
| 159 | | zmodfz 12692 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑀↑𝑛) ∈ ℕ) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
| 160 | 85, 92, 159 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
| 161 | | simprr 796 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 162 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → (𝐹‘𝑗) = (𝐹‘(𝑘 mod (𝑀↑𝑛)))) |
| 163 | 162 | breq1d 4663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → ((𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 164 | 163 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1)) → (∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 165 | 160, 161,
164 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 166 | 111, 101 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ∈ ℝ) |
| 167 | 101 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℂ) |
| 168 | 108 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 169 | 167, 168 | mulcomd 10061 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛))) |
| 170 | 50, 61 | abvge0 18825 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → 0 ≤ (𝐹‘𝑀)) |
| 171 | 83, 99, 170 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝐹‘𝑀)) |
| 172 | 100, 91, 171 | expge0d 13026 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ ((𝐹‘𝑀)↑𝑛)) |
| 173 | 104 | zred 11482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℝ) |
| 174 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘) |
| 175 | 174 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑘) |
| 176 | 92 | nnred 11035 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℝ) |
| 177 | 92 | nngt0d 11064 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀↑𝑛)) |
| 178 | | divge0 10892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 ∈ ℝ ∧ 0 ≤
𝑘) ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
| 179 | 102, 175,
176, 177, 178 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
| 180 | | flge0nn0 12621 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀↑𝑛))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
| 181 | 103, 179,
180 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
| 182 | 51, 50 | qabvle 25314 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
| 183 | 83, 181, 182 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
| 184 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) |
| 185 | | 0z 11388 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℤ |
| 186 | 90, 118 | nnexpcld 13030 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ) |
| 187 | 186 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ) |
| 188 | | elfzm11 12411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((0
∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
| 189 | 185, 187,
188 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
| 190 | 184, 189 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1)))) |
| 191 | 190 | simp3d 1075 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1))) |
| 192 | 90 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℂ) |
| 193 | 192, 91 | expp1d 13009 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀↑𝑛) · 𝑀)) |
| 194 | 191, 193 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < ((𝑀↑𝑛) · 𝑀)) |
| 195 | | ltdivmul 10898 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
| 196 | 102, 111,
176, 177, 195 | syl112anc 1330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
| 197 | 194, 196 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) < 𝑀) |
| 198 | 90 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℤ) |
| 199 | | fllt 12607 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
| 200 | 103, 198,
199 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
| 201 | 197, 200 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀) |
| 202 | 173, 111,
201 | ltled 10185 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ≤ 𝑀) |
| 203 | 108, 173,
111, 183, 202 | letrd 10194 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ 𝑀) |
| 204 | 108, 111,
101, 172, 203 | lemul1ad 10963 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
| 205 | 169, 204 | eqbrtrd 4675 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
| 206 | 90 | nnnn0d 11351 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈
ℕ0) |
| 207 | 206 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑀) |
| 208 | | max1 12016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 209 | 100, 58, 208 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 210 | 209, 57 | syl6breqr 4695 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ 𝑇) |
| 211 | | leexp1a 12919 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤
(𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ 𝑇)) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
| 212 | 100, 116,
91, 171, 210, 211 | syl32anc 1334 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
| 213 | 101, 152,
111, 207, 212 | lemul2ad 10964 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · (𝑇↑𝑛))) |
| 214 | 109, 166,
158, 205, 213 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · (𝑇↑𝑛))) |
| 215 | 98, 109, 157, 158, 165, 214 | le2addd 10646 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 216 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
| 217 | 216 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℂ) |
| 218 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ∈
ℂ) |
| 219 | 192, 217,
218 | adddid 10064 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
| 220 | 192 | mulid1d 10057 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 1) = 𝑀) |
| 221 | 220 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀)) |
| 222 | 219, 221 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀)) |
| 223 | 222 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛))) |
| 224 | 192, 217 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℂ) |
| 225 | 152 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℂ) |
| 226 | 224, 192,
225 | adddird 10065 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 227 | 223, 226 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 228 | 215, 227 | breqtrrd 4681 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛))) |
| 229 | | max2 12018 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 230 | 100, 58, 229 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 231 | 230, 57 | syl6breqr 4695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ 𝑇) |
| 232 | | nn0z 11400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 233 | 232 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℤ) |
| 234 | | uzid 11702 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
| 235 | 233, 234 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ (ℤ≥‘𝑛)) |
| 236 | | peano2uz 11741 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
| 237 | 235, 236 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
| 238 | 116, 231,
237 | leexp2ad 13041 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1))) |
| 239 | 90, 113 | nnmulcld 11068 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ) |
| 240 | 239 | nngt0d 11064 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀 · (𝑛 + 1))) |
| 241 | | lemul2 10876 |
. . . . . . . . . . . . . 14
⊢ (((𝑇↑𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 242 | 152, 119,
115, 240, 241 | syl112anc 1330 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 243 | 238, 242 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 244 | 110, 153,
120, 228, 243 | letrd 10194 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 245 | 89, 110, 120, 151, 244 | letrd 10194 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 246 | 245 | expr 643 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 247 | 246 | ralrimdva 2969 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑗 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 248 | 82, 247 | syl5bi 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 249 | 248 | expcom 451 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝜑 →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 250 | 249 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 251 | 9, 18, 27, 36, 79, 250 | nn0ind 11472 |
. . . 4
⊢ (𝑋 ∈ ℕ0
→ (𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 252 | 251 | impcom 446 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
| 253 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) |
| 254 | 253 | breq1d 4663 |
. . . 4
⊢ (𝑘 = 𝑌 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) ↔ (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 255 | 254 | rspccv 3306 |
. . 3
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 256 | 252, 255 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 257 | 256 | 3impia 1261 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |