MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cpbl Structured version   Visualization version   GIF version

Theorem pi1cpbl 22844
Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1bas2.b (𝜑𝐵 = (Base‘𝐺))
pi1bas3.r 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
pi1cpbl.o 𝑂 = (𝐽 Ω1 𝑌)
pi1cpbl.a + = (+g𝑂)
Assertion
Ref Expression
pi1cpbl (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))

Proof of Theorem pi1cpbl
StepHypRef Expression
1 pi1cpbl.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
2 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
32adantr 481 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋))
4 pi1val.2 . . . . . 6 (𝜑𝑌𝑋)
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑌𝑋)
6 pi1val.g . . . . . 6 𝐺 = (𝐽 π1 𝑌)
7 pi1bas2.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺))
9 eqidd 2623 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂))
106, 3, 5, 1, 8, 9pi1buni 22840 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝑂))
11 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀𝑅𝑁)
12 pi1bas3.r . . . . . . . . 9 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
1312breqi 4659 . . . . . . . 8 (𝑀𝑅𝑁𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁)
14 brinxp2 5180 . . . . . . . 8 (𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1513, 14bitri 264 . . . . . . 7 (𝑀𝑅𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1611, 15sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1716simp1d 1073 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀 𝐵)
18 simprr 796 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃𝑅𝑄)
1912breqi 4659 . . . . . . . 8 (𝑃𝑅𝑄𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄)
20 brinxp2 5180 . . . . . . . 8 (𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2119, 20bitri 264 . . . . . . 7 (𝑃𝑅𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2218, 21sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2322simp1d 1073 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃 𝐵)
241, 3, 5, 10, 17, 23om1addcl 22833 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) ∈ 𝐵)
2516simp2d 1074 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑁 𝐵)
2622simp2d 1074 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑄 𝐵)
271, 3, 5, 10, 25, 26om1addcl 22833 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵)
286, 3, 5, 8pi1eluni 22842 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)))
2917, 28mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))
3029simp3d 1075 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌)
316, 3, 5, 8pi1eluni 22842 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)))
3223, 31mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp2d 1074 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌)
3430, 33eqtr4d 2659 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0))
3516simp3d 1075 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀( ≃ph𝐽)𝑁)
3622simp3d 1075 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃( ≃ph𝐽)𝑄)
3734, 35, 36pcohtpy 22820 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄))
3812breqi 4659 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ (𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄))
39 brinxp2 5180 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4038, 39bitri 264 . . . 4 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4124, 27, 37, 40syl3anbrc 1246 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄))
421, 3, 5om1plusg 22834 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = (+g𝑂))
43 pi1cpbl.a . . . . 5 + = (+g𝑂)
4442, 43syl6eqr 2674 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = + )
4544oveqd 6667 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) = (𝑀 + 𝑃))
4644oveqd 6667 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) = (𝑁 + 𝑄))
4741, 45, 463brtr3d 4684 . 2 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))
4847ex 450 1 (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573   cuni 4436   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  Basecbs 15857  +gcplusg 15941  TopOnctopon 20715   Cn ccn 21028  IIcii 22678  phcphtpc 22768  *𝑝cpco 22800   Ω1 comi 22801   π1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808
This theorem is referenced by:  pi1addf  22847  pi1addval  22848  pi1grplem  22849
  Copyright terms: Public domain W3C validator