MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrval Structured version   Visualization version   GIF version

Theorem pi1xfrval 22854
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfrval.i (𝜑𝐼 ∈ (II Cn 𝐽))
pi1xfrval.1 (𝜑 → (𝐹‘1) = (𝐼‘0))
pi1xfrval.2 (𝜑 → (𝐼‘1) = (𝐹‘0))
pi1xfrval.a (𝜑𝐴 𝐵)
Assertion
Ref Expression
pi1xfrval (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐼   𝐴,𝑔   𝜑,𝑔   𝑔,𝐽   𝑃,𝑔   𝑄,𝑔
Allowed substitution hints:   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1xfrval
StepHypRef Expression
1 pi1xfrval.a . 2 (𝜑𝐴 𝐵)
2 pi1xfr.g . . 3 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
3 fvex 6201 . . . 4 ( ≃ph𝐽) ∈ V
4 ecexg 7746 . . . 4 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
53, 4mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
6 ecexg 7746 . . . 4 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
73, 6mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
8 eceq1 7782 . . 3 (𝑔 = 𝐴 → [𝑔]( ≃ph𝐽) = [𝐴]( ≃ph𝐽))
9 oveq1 6657 . . . . 5 (𝑔 = 𝐴 → (𝑔(*𝑝𝐽)𝐹) = (𝐴(*𝑝𝐽)𝐹))
109oveq2d 6666 . . . 4 (𝑔 = 𝐴 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹)))
1110eceq1d 7783 . . 3 (𝑔 = 𝐴 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
12 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
13 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
14 pi1xfr.b . . . . 5 𝐵 = (Base‘𝑃)
15 pi1xfr.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
17 pi1xfrval.i . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
18 pi1xfrval.1 . . . . 5 (𝜑 → (𝐹‘1) = (𝐼‘0))
19 pi1xfrval.2 . . . . 5 (𝜑 → (𝐼‘1) = (𝐹‘0))
2012, 13, 14, 2, 15, 16, 17, 18, 19pi1xfrf 22853 . . . 4 (𝜑𝐺:𝐵⟶(Base‘𝑄))
21 ffun 6048 . . . 4 (𝐺:𝐵⟶(Base‘𝑄) → Fun 𝐺)
2220, 21syl 17 . . 3 (𝜑 → Fun 𝐺)
232, 5, 7, 8, 11, 22fliftval 6566 . 2 ((𝜑𝐴 𝐵) → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
241, 23mpdan 702 1 (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   cuni 4436  cmpt 4729  ran crn 5115  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  [cec 7740  0cc0 9936  1c1 9937  Basecbs 15857  TopOnctopon 20715   Cn ccn 21028  IIcii 22678  phcphtpc 22768  *𝑝cpco 22800   π1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808
This theorem is referenced by:  pi1xfr  22855
  Copyright terms: Public domain W3C validator