| Step | Hyp | Ref
| Expression |
| 1 | | pi1xfr.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | iitopon 22682 |
. . . . . . 7
⊢ II ∈
(TopOn‘(0[,]1)) |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
| 4 | | pi1xfr.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | | cnf2 21053 |
. . . . . 6
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋) |
| 6 | 3, 1, 4, 5 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → 𝐹:(0[,]1)⟶𝑋) |
| 7 | | 0elunit 12290 |
. . . . 5
⊢ 0 ∈
(0[,]1) |
| 8 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) →
(𝐹‘0) ∈ 𝑋) |
| 9 | 6, 7, 8 | sylancl 694 |
. . . 4
⊢ (𝜑 → (𝐹‘0) ∈ 𝑋) |
| 10 | | pi1xfr.p |
. . . . 5
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
| 11 | 10 | pi1grp 22850 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘0) ∈ 𝑋) → 𝑃 ∈ Grp) |
| 12 | 1, 9, 11 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 13 | | 1elunit 12291 |
. . . . 5
⊢ 1 ∈
(0[,]1) |
| 14 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) →
(𝐹‘1) ∈ 𝑋) |
| 15 | 6, 13, 14 | sylancl 694 |
. . . 4
⊢ (𝜑 → (𝐹‘1) ∈ 𝑋) |
| 16 | | pi1xfr.q |
. . . . 5
⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
| 17 | 16 | pi1grp 22850 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘1) ∈ 𝑋) → 𝑄 ∈ Grp) |
| 18 | 1, 15, 17 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Grp) |
| 19 | 12, 18 | jca 554 |
. 2
⊢ (𝜑 → (𝑃 ∈ Grp ∧ 𝑄 ∈ Grp)) |
| 20 | | pi1xfr.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
| 21 | | pi1xfr.g |
. . . 4
⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
| 22 | | pi1xfr.i |
. . . . . . 7
⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| 23 | 22 | pcorevcl 22825 |
. . . . . 6
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 24 | 4, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 25 | 24 | simp1d 1073 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| 26 | 24 | simp2d 1074 |
. . . . 5
⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
| 27 | 26 | eqcomd 2628 |
. . . 4
⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) |
| 28 | 24 | simp3d 1075 |
. . . 4
⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
| 29 | 10, 16, 20, 21, 1, 4, 25, 27, 28 | pi1xfrf 22853 |
. . 3
⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) |
| 30 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 31 | 10, 1, 9, 30 | pi1bas2 22841 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (∪ 𝐵 / (
≃ph‘𝐽))) |
| 32 | 31 | eleq2d 2687 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (∪ 𝐵 / (
≃ph‘𝐽)))) |
| 33 | 32 | biimpa 501 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (∪ 𝐵 / (
≃ph‘𝐽))) |
| 34 | | eqid 2622 |
. . . . . 6
⊢ (∪ 𝐵
/ ( ≃ph‘𝐽)) = (∪ 𝐵 / (
≃ph‘𝐽)) |
| 35 | | oveq1 6657 |
. . . . . . . . 9
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → ([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧) = (𝑦(+g‘𝑃)𝑧)) |
| 36 | 35 | fveq2d 6195 |
. . . . . . . 8
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = (𝐺‘(𝑦(+g‘𝑃)𝑧))) |
| 37 | | fveq2 6191 |
. . . . . . . . 9
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph‘𝐽)) = (𝐺‘𝑦)) |
| 38 | 37 | oveq1d 6665 |
. . . . . . . 8
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧))) |
| 39 | 36, 38 | eqeq12d 2637 |
. . . . . . 7
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧)) ↔ (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧)))) |
| 40 | 39 | ralbidv 2986 |
. . . . . 6
⊢ ([𝑓](
≃ph‘𝐽) = 𝑦 → (∀𝑧 ∈ 𝐵 (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧)))) |
| 41 | 31 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (∪ 𝐵 / (
≃ph‘𝐽)))) |
| 42 | 41 | biimpa 501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (∪ 𝐵 / (
≃ph‘𝐽))) |
| 43 | 42 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (∪ 𝐵 / (
≃ph‘𝐽))) |
| 44 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ ([ℎ](
≃ph‘𝐽) = 𝑧 → ([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽)) = ([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) |
| 45 | 44 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ([ℎ](
≃ph‘𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽))) = (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧))) |
| 46 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ ([ℎ](
≃ph‘𝐽) = 𝑧 → (𝐺‘[ℎ]( ≃ph‘𝐽)) = (𝐺‘𝑧)) |
| 47 | 46 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ([ℎ](
≃ph‘𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘[ℎ]( ≃ph‘𝐽))) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧))) |
| 48 | 45, 47 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ([ℎ](
≃ph‘𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽))) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘[ℎ]( ≃ph‘𝐽))) ↔ (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧)))) |
| 49 | | phtpcer 22794 |
. . . . . . . . . . . . . 14
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
| 51 | 10, 1, 9, 30 | pi1eluni 22842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑓 ∈ ∪ 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0)))) |
| 52 | 51 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0))) |
| 53 | 52 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → 𝑓 ∈ (II Cn 𝐽)) |
| 54 | 53 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝑓 ∈ (II Cn 𝐽)) |
| 55 | 10, 1, 9, 30 | pi1eluni 22842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (ℎ ∈ ∪ 𝐵 ↔ (ℎ ∈ (II Cn 𝐽) ∧ (ℎ‘0) = (𝐹‘0) ∧ (ℎ‘1) = (𝐹‘0)))) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (ℎ ∈ ∪ 𝐵 ↔ (ℎ ∈ (II Cn 𝐽) ∧ (ℎ‘0) = (𝐹‘0) ∧ (ℎ‘1) = (𝐹‘0)))) |
| 57 | 56 | biimp3a 1432 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ ∈ (II Cn 𝐽) ∧ (ℎ‘0) = (𝐹‘0) ∧ (ℎ‘1) = (𝐹‘0))) |
| 58 | 57 | simp1d 1073 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ℎ ∈ (II Cn 𝐽)) |
| 59 | 54, 58 | pco0 22814 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)‘0) = (𝑓‘0)) |
| 60 | 52 | simp2d 1074 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝑓‘0) = (𝐹‘0)) |
| 61 | 60 | 3adant3 1081 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓‘0) = (𝐹‘0)) |
| 62 | 59, 61 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)‘0) = (𝐹‘0)) |
| 63 | 52 | simp3d 1075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝑓‘1) = (𝐹‘0)) |
| 64 | 63 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓‘1) = (𝐹‘0)) |
| 65 | 57 | simp2d 1074 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ‘0) = (𝐹‘0)) |
| 66 | 64, 65 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓‘1) = (ℎ‘0)) |
| 67 | 54, 58, 66 | pcocn 22817 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)ℎ) ∈ (II Cn 𝐽)) |
| 68 | 4 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝐹 ∈ (II Cn 𝐽)) |
| 69 | 67, 68 | pco0 22814 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹)‘0) = ((𝑓(*𝑝‘𝐽)ℎ)‘0)) |
| 70 | 28 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼‘1) = (𝐹‘0)) |
| 71 | 62, 69, 70 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼‘1) = (((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹)‘0)) |
| 72 | 25 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝐼 ∈ (II Cn 𝐽)) |
| 73 | 50, 72 | erref 7762 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝐼( ≃ph‘𝐽)𝐼) |
| 74 | 57 | simp3d 1075 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ‘1) = (𝐹‘0)) |
| 75 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) |
| 76 | 54, 58, 68, 66, 74, 75 | pcoass 22824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)(𝑓(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))) |
| 77 | 58, 68 | pco0 22814 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((ℎ(*𝑝‘𝐽)𝐹)‘0) = (ℎ‘0)) |
| 78 | 66, 77 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓‘1) = ((ℎ(*𝑝‘𝐽)𝐹)‘0)) |
| 79 | 50, 54 | erref 7762 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝑓( ≃ph‘𝐽)𝑓) |
| 80 | 68, 72 | pco1 22815 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)‘1) = (𝐼‘1)) |
| 81 | 65, 77, 70 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼‘1) = ((ℎ(*𝑝‘𝐽)𝐹)‘0)) |
| 82 | 80, 81 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)‘1) = ((ℎ(*𝑝‘𝐽)𝐹)‘0)) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0[,]1)
× {(𝐹‘0)}) =
((0[,]1) × {(𝐹‘0)}) |
| 84 | 22, 83 | pcorev2 22828 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| 85 | 68, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐹(*𝑝‘𝐽)𝐼)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| 86 | 58, 68, 74 | pcocn 22817 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ(*𝑝‘𝐽)𝐹) ∈ (II Cn 𝐽)) |
| 87 | 50, 86 | erref 7762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) |
| 88 | 82, 85, 87 | pcohtpy 22820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))) |
| 89 | 77, 65 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((ℎ(*𝑝‘𝐽)𝐹)‘0) = (𝐹‘0)) |
| 90 | 83 | pcopt 22822 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ(*𝑝‘𝐽)𝐹) ∈ (II Cn 𝐽) ∧ ((ℎ(*𝑝‘𝐽)𝐹)‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) |
| 91 | 86, 89, 90 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (((0[,]1) ×
{(𝐹‘0)})(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) |
| 92 | 50, 88, 91 | ertrd 7758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) |
| 93 | 26 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼‘0) = (𝐹‘1)) |
| 94 | 93 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐹‘1) = (𝐼‘0)) |
| 95 | 68, 72, 86, 94, 81, 75 | pcoass 22824 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐹(*𝑝‘𝐽)𝐼)(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))) |
| 96 | 50, 92, 95 | ertr3d 7760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (ℎ(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))) |
| 97 | 78, 79, 96 | pcohtpy 22820 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(𝑓(*𝑝‘𝐽)(𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))))) |
| 98 | 72, 86, 81 | pcocn 22817 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽)) |
| 99 | 72, 86 | pco0 22814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘0) = (𝐼‘0)) |
| 100 | 99, 93 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1)) |
| 101 | 100 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐹‘1) = ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘0)) |
| 102 | 54, 68, 98, 64, 101, 75 | pcoass 22824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))( ≃ph‘𝐽)(𝑓(*𝑝‘𝐽)(𝐹(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))))) |
| 103 | 50, 97, 102 | ertr4d 7761 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)((𝑓(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))) |
| 104 | 50, 76, 103 | ertrd 7758 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((𝑓(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))) |
| 105 | 71, 73, 104 | pcohtpy 22820 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)(𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))))) |
| 106 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → 𝐹 ∈ (II Cn 𝐽)) |
| 107 | 53, 106, 63 | pcocn 22817 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)𝐹) ∈ (II Cn 𝐽)) |
| 108 | 107 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)𝐹) ∈ (II Cn 𝐽)) |
| 109 | 53, 106 | pco0 22814 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)𝐹)‘0) = (𝑓‘0)) |
| 110 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐼‘1) = (𝐹‘0)) |
| 111 | 60, 109, 110 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐼‘1) = ((𝑓(*𝑝‘𝐽)𝐹)‘0)) |
| 112 | 111 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼‘1) = ((𝑓(*𝑝‘𝐽)𝐹)‘0)) |
| 113 | 54, 68 | pco1 22815 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)𝐹)‘1) = (𝐹‘1)) |
| 114 | 113, 100 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)𝐹)‘1) = ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘0)) |
| 115 | 72, 108, 98, 112, 114, 75 | pcoass 22824 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))( ≃ph‘𝐽)(𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)𝐹)(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))))) |
| 116 | 50, 105, 115 | ertr4d 7761 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹))( ≃ph‘𝐽)((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))) |
| 117 | 50, 116 | erthi 7793 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → [(𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))](
≃ph‘𝐽)) |
| 118 | 1 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝐽 ∈ (TopOn‘𝑋)) |
| 119 | 54, 58 | pco1 22815 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)‘1) = (ℎ‘1)) |
| 120 | 119, 74 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ)‘1) = (𝐹‘0)) |
| 121 | 10, 1, 9, 30 | pi1eluni 22842 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑓(*𝑝‘𝐽)ℎ) ∈ ∪ 𝐵 ↔ ((𝑓(*𝑝‘𝐽)ℎ) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝‘𝐽)ℎ)‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝‘𝐽)ℎ)‘1) = (𝐹‘0)))) |
| 122 | 121 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)ℎ) ∈ ∪ 𝐵 ↔ ((𝑓(*𝑝‘𝐽)ℎ) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝‘𝐽)ℎ)‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝‘𝐽)ℎ)‘1) = (𝐹‘0)))) |
| 123 | 67, 62, 120, 122 | mpbir3and 1245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝑓(*𝑝‘𝐽)ℎ) ∈ ∪ 𝐵) |
| 124 | 10, 16, 20, 21, 118, 68, 72, 94, 70, 123 | pi1xfrval 22854 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘[(𝑓(*𝑝‘𝐽)ℎ)]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)((𝑓(*𝑝‘𝐽)ℎ)(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 125 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 126 | 15 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐹‘1) ∈ 𝑋) |
| 127 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 128 | 25 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → 𝐼 ∈ (II Cn 𝐽)) |
| 129 | 128, 107,
111 | pcocn 22817 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽)) |
| 130 | 129 | 3adant3 1081 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽)) |
| 131 | 128, 107 | pco0 22814 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘0) = (𝐼‘0)) |
| 132 | 26 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐼‘0) = (𝐹‘1)) |
| 133 | 131, 132 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1)) |
| 134 | 133 | 3adant3 1081 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1)) |
| 135 | 128, 107 | pco1 22815 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘1) = ((𝑓(*𝑝‘𝐽)𝐹)‘1)) |
| 136 | 53, 106 | pco1 22815 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝑓(*𝑝‘𝐽)𝐹)‘1) = (𝐹‘1)) |
| 137 | 135, 136 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)) |
| 138 | 137 | 3adant3 1081 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)) |
| 139 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (Base‘𝑄) = (Base‘𝑄)) |
| 140 | 16, 118, 126, 139 | pi1eluni 22842 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄) ↔
((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)))) |
| 141 | 130, 134,
138, 140 | mpbir3and 1245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄)) |
| 142 | 72, 86 | pco1 22815 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘1) = ((ℎ(*𝑝‘𝐽)𝐹)‘1)) |
| 143 | 58, 68 | pco1 22815 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((ℎ(*𝑝‘𝐽)𝐹)‘1) = (𝐹‘1)) |
| 144 | 142, 143 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)) |
| 145 | 16, 118, 126, 139 | pi1eluni 22842 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄) ↔
((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))‘1) = (𝐹‘1)))) |
| 146 | 98, 100, 144, 145 | mpbir3and 1245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)) ∈ ∪
(Base‘𝑄)) |
| 147 | 16, 125, 118, 126, 127, 141, 146 | pi1addval 22848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ([(𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)(+g‘𝑄)[(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) = [((𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))(*𝑝‘𝐽)(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹)))](
≃ph‘𝐽)) |
| 148 | 117, 124,
147 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘[(𝑓(*𝑝‘𝐽)ℎ)]( ≃ph‘𝐽)) = ([(𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)(+g‘𝑄)[(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽))) |
| 149 | 9 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐹‘0) ∈ 𝑋) |
| 150 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 151 | | simp2 1062 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → 𝑓 ∈ ∪ 𝐵) |
| 152 | | simp3 1063 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ℎ ∈ ∪ 𝐵) |
| 153 | 10, 20, 118, 149, 150, 151, 152 | pi1addval 22848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽)) = [(𝑓(*𝑝‘𝐽)ℎ)]( ≃ph‘𝐽)) |
| 154 | 153 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽))) = (𝐺‘[(𝑓(*𝑝‘𝐽)ℎ)]( ≃ph‘𝐽))) |
| 155 | 1 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → 𝐽 ∈ (TopOn‘𝑋)) |
| 156 | 27 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐹‘1) = (𝐼‘0)) |
| 157 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → 𝑓 ∈ ∪ 𝐵) |
| 158 | 10, 16, 20, 21, 155, 106, 128, 156, 110, 157 | pi1xfrval 22854 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → (𝐺‘[𝑓]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 159 | 158 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘[𝑓]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 160 | 10, 16, 20, 21, 118, 68, 72, 94, 70, 152 | pi1xfrval 22854 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘[ℎ]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 161 | 159, 160 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘[ℎ]( ≃ph‘𝐽))) = ([(𝐼(*𝑝‘𝐽)(𝑓(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)(+g‘𝑄)[(𝐼(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽))) |
| 162 | 148, 154,
161 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽))) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘[ℎ]( ≃ph‘𝐽)))) |
| 163 | 162 | 3expa 1265 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) ∧ ℎ ∈ ∪ 𝐵) → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)[ℎ]( ≃ph‘𝐽))) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘[ℎ]( ≃ph‘𝐽)))) |
| 164 | 34, 48, 163 | ectocld 7814 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) ∧ 𝑧 ∈ (∪ 𝐵 / (
≃ph‘𝐽))) → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧))) |
| 165 | 43, 164 | syldan 487 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) ∧ 𝑧 ∈ 𝐵) → (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧))) |
| 166 | 165 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ∪ 𝐵) → ∀𝑧 ∈ 𝐵 (𝐺‘([𝑓]( ≃ph‘𝐽)(+g‘𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph‘𝐽))(+g‘𝑄)(𝐺‘𝑧))) |
| 167 | 34, 40, 166 | ectocld 7814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐵 / (
≃ph‘𝐽))) → ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧))) |
| 168 | 33, 167 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧))) |
| 169 | 168 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧))) |
| 170 | 29, 169 | jca 554 |
. 2
⊢ (𝜑 → (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧)))) |
| 171 | 20, 125, 150, 127 | isghm 17660 |
. 2
⊢ (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐺‘(𝑦(+g‘𝑃)𝑧)) = ((𝐺‘𝑦)(+g‘𝑄)(𝐺‘𝑧))))) |
| 172 | 19, 170, 171 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) |