Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Structured version   Visualization version   Unicode version

Theorem stoweidlem56 40273
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here  Z is used to represent t0 in the paper,  v is used to represent  V in the paper, and  e is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1  |-  F/_ t U
stoweidlem56.2  |-  F/ t
ph
stoweidlem56.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem56.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem56.5  |-  T  = 
U. J
stoweidlem56.6  |-  C  =  ( J  Cn  K
)
stoweidlem56.7  |-  ( ph  ->  A  C_  C )
stoweidlem56.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem56.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem56.10  |-  ( (
ph  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
stoweidlem56.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem56.12  |-  ( ph  ->  U  e.  J )
stoweidlem56.13  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem56  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Distinct variable groups:    e, f,
g, t, A    v,
e, x, t, A   
y, e, f, t, A    g, J, t    T, e, f, g, t    U, e, f, g    e, Z, f, g, t    ph, e,
f, g    f, q,
g, t, A, r   
y, q, T    U, q, y    Z, q, y    ph, q, y, r    T, r    U, r    ph, r    t, K    v, J    v, T, x    v, U, x   
v, Z
Allowed substitution hints:    ph( x, v, t)    C( x, y, v, t, e, f, g, r, q)    U( t)    J( x, y, e, f, r, q)    K( x, y, v, e, f, g, r, q)    Z( x, r)

Proof of Theorem stoweidlem56
Dummy variables  d  p  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5  |-  F/_ t U
2 stoweidlem56.2 . . . . 5  |-  F/ t
ph
3 stoweidlem56.3 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem56.4 . . . . 5  |-  ( ph  ->  J  e.  Comp )
5 stoweidlem56.5 . . . . 5  |-  T  = 
U. J
6 stoweidlem56.6 . . . . 5  |-  C  =  ( J  Cn  K
)
7 stoweidlem56.7 . . . . 5  |-  ( ph  ->  A  C_  C )
8 stoweidlem56.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
9 stoweidlem56.9 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
10 stoweidlem56.10 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
11 stoweidlem56.11 . . . . 5  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
12 stoweidlem56.12 . . . . 5  |-  ( ph  ->  U  e.  J )
13 stoweidlem56.13 . . . . 5  |-  ( ph  ->  Z  e.  U )
14 eqid 2622 . . . . 5  |-  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) }  =  {
h  e.  A  | 
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) ) }
15 eqid 2622 . . . . 5  |-  { w  e.  J  |  E. h  e.  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) } w  =  { t  e.  T  |  0  <  (
h `  t ) } }  =  {
w  e.  J  |  E. h  e.  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) } w  =  { t  e.  T  |  0  <  (
h `  t ) } }
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 40272 . . . 4  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
17 df-rex 2918 . . . 4  |-  ( E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  <->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
1816, 17sylib 208 . . 3  |-  ( ph  ->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
19 simpl 473 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  ph )
20 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  p  e.  A )
21 simprr3 1111 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  A. t  e.  ( T  \  U ) 0  <  ( p `  t ) )
22 nfv 1843 . . . . . . . . 9  |-  F/ t  p  e.  A
23 nfra1 2941 . . . . . . . . 9  |-  F/ t A. t  e.  ( T  \  U ) 0  <  ( p `
 t )
242, 22, 23nf3an 1831 . . . . . . . 8  |-  F/ t ( ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)
2543ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  J  e.  Comp )
267sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  A )  ->  p  e.  C )
2726, 6syl6eleq 2711 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  A )  ->  p  e.  ( J  Cn  K
) )
28273adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  p  e.  ( J  Cn  K
) )
29 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)
30123ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  U  e.  J )
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 40245 . . . . . . 7  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  E. d
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )
3219, 20, 21, 31syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )
33 simpr1 1067 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  d  e.  RR+ )
34 simpr2 1068 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  d  <  1
)
35 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  p  e.  A
)
36 simprr1 1109 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
3736adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
38 simprr2 1110 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( p `  Z
)  =  0 )
3938adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( p `  Z )  =  0 )
40 simpr3 1069 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
4137, 39, 403jca 1242 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( A. t  e.  T  ( 0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) d  <_ 
( p `  t
) ) )
4235, 41jca 554 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( p  e.  A  /\  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) d  <_ 
( p `  t
) ) ) )
4333, 34, 423jca 1242 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
4443ex 450 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )  -> 
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4544eximdv 1846 . . . . . 6  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
)  ->  E. d
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4632, 45mpd 15 . . . . 5  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
4746ex 450 . . . 4  |-  ( ph  ->  ( ( p  e.  A  /\  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4847eximdv 1846 . . 3  |-  ( ph  ->  ( E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )  ->  E. p E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4918, 48mpd 15 . 2  |-  ( ph  ->  E. p E. d
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
50 nfv 1843 . . . . . . 7  |-  F/ t  d  e.  RR+
51 nfv 1843 . . . . . . 7  |-  F/ t  d  <  1
52 nfra1 2941 . . . . . . . . 9  |-  F/ t A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )
53 nfv 1843 . . . . . . . . 9  |-  F/ t ( p `  Z
)  =  0
54 nfra1 2941 . . . . . . . . 9  |-  F/ t A. t  e.  ( T  \  U ) d  <_  ( p `  t )
5552, 53, 54nf3an 1831 . . . . . . . 8  |-  F/ t ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
)
5622, 55nfan 1828 . . . . . . 7  |-  F/ t ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) )
5750, 51, 56nf3an 1831 . . . . . 6  |-  F/ t ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )
582, 57nfan 1828 . . . . 5  |-  F/ t ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
59 nfcv 2764 . . . . 5  |-  F/_ t
p
60 eqid 2622 . . . . 5  |-  { t  e.  T  |  ( p `  t )  <  ( d  / 
2 ) }  =  { t  e.  T  |  ( p `  t )  <  (
d  /  2 ) }
617adantr 481 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A  C_  C
)
6283adant1r 1319 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
6393adant1r 1319 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6410adantlr 751 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
65 simpr1 1067 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  d  e.  RR+ )
66 simpr2 1068 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  d  <  1
)
6712adantr 481 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  U  e.  J
)
6813adantr 481 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  Z  e.  U
)
69 simpr3l 1122 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  p  e.  A
)
70 simp3r1 1169 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
7170adantl 482 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
72 simp3r2 1170 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  -> 
( p `  Z
)  =  0 )
7372adantl 482 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  ( p `  Z )  =  0 )
74 simp3r3 1171 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
7574adantl 482 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 40269 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
7776ex 450 . . 3  |-  ( ph  ->  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) ) )
7877exlimdvv 1862 . 2  |-  ( ph  ->  ( E. p E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) ) )
7949, 78mpd 15 1  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   topGenctg 16098    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem57  40274
  Copyright terms: Public domain W3C validator